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Abstract

We analyze a family of graphs known as banana graphs, with two marked vertices, through the lens of
Hurwitz–Brill–Noether theory. As an application, we construct explicit new examples of finite graphs which are
Brill–Noether general. These are the first such examples since the analysis of chains of loops by Cools, Draisma,
Payne and Robeva. The graphs constructed are chains of loops and “theta graphs,” which are banana graphs
of genus 2. We also demonstrate that almost all banana graphs of genus at least 3 cannot be used for this
purpose, due either to failure of a submodularity condition or to the presence of far too many inversions in certain
permutations associated to divisors called transmission permutations.

1 Introduction

This paper offers a case study in Brill–Noether theory of graphs. Its contents are complementary to [27]; our aim
is perform some explicit computations and examples with the tools developed in that paper to obtain some novel
examples and shine light on some of the intriguing phenomena that arise. In particular, we construct the first explicit
examples of Brill–Noether general graphs in all genera other than the famous chains of loops found in [6]. Our focus is
on an enriched form of Brill–Noether theory taking two marked vertices into account; we perform a detailed analysis
of banana graphs from this point of view, and use this analysis for our other constructions.

Brill–Noether theory of graphs is a purely combinatorial subject born out of a tantalizing analogy with algebraic
geometry. This analogy was brought into sharp relief by Baker and Norine [4], which proved a graph-theoretic analog
of the classical Riemann–Roch formula. The essence of the analogy is that a configuration of chips on a finite graph,
up to an equivalence relation generated by chip-firing moves, are analogous to line bundles on smooth algebraic
curves. In light of this analogy, we refer to chip configurations on a finite graph as divisors, and the chip-firing
equivalence relation linear equivalence. A key innovation of [4] is a simple and useful definition of the rank r(D) of
a divisor, which, roughly speaking, is a graph-theoretic analog of the dimension of a projective space Pr to which
a line bundle defines a map from an algebraic curve. We refer the reader to [4] or the expository book [7] for the
terminology and background on divisors and rank, and the Riemann–Roch theorem.

We consider three versions of Brill–Noether theory of graphs in this paper, considering graphs with zero, one or
two marked vertices. There are two reasons for adding marked vertices. First, doing so provides a tool to study
Brill–Noether theory of graphs without marked points, by gluing graphs at marked points. This is what enables our
new constructions of Brill–Noether general graphs. Second, the enriched question lends itself to interesting examples
and computations in low genus; we will see interesting behavior even in genus 2 when two vertices are marked.

We explain each situation in turn.

1.1 Brill–Noether general graphs

The driving question of this paper may be stated informally as follows: which finite graphs (perhaps with marked
vertices), most closely resemble a “typical” algebraic curve of the same genus (perhaps with marked points), from the
standpoint of ranks of divisors? For now, we do not incorporate any marked points. To make this informal question
a bit more precise, we introduce the following term.

Definition 1.1. For a graph or smooth algebraic curve, the divisor census is the set of all pairs (d, r) of integers for
which there exists a divisor D with degD = d and r(D) ≥ r.

Much of the richness of the geometry of algebraic curves stems from the fact that not every curve of the same
genus has the same divisor census. Nonetheless, the celebrated Brill–Noether theorem [9] says in part that there is
one specific divisor census that is “typical:” if a genus-g curve is chosen at random from the moduli space of curves,
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u = u1
v1 = u2

k1 = 4

v2

k2 = 5

v3

u3

k3 = 5

u4

v4 = u5

k4 = 5

v5 = v

k5 = 3

Figure 1: A new example of a Brill–Noether general graph. See Example 1.12 for discussion of this example.

then with probability 1 its divisor census consists of those pairs (d, r) for which the following Brill–Noether number
is nonnegative.

ρ(g, r, d) = g − (r + 1)(g − d+ r) ≥ 0

Therefore, one may regard a graph with this same divisor census as resembling a “typical” algebraic curve. Nonethe-
less, at the outset of this story it was by no means obvious that any such graphs exist. Indeed, Baker made the
following conjecture, paraphrased from [3, Conjecture 3.9] in our terminology.

Conjecture 1.2 (Brill–Noether conjecture for graphs [3]). For every genus g ≥ 0,

1) Every genus g graph contains every pair (d, r) with ρ(g, r, d) ≥ 0 in its divisor census.

2) There exists a genus g graph such that every (d, r) in the divisor census satisfies ρ(g, r, d) ≥ 0 (proved in [6])

Part 1 of Conjecture 1.2 is still open outside of small genus [2], although the analogous statement for metric
graphs was established in [3]. The proof of in [6] used the now-famous example of chains of loops.

Definition 1.3. Graphs satisfying part 2 of Conjecture 1.2 are called Brill–Noether general.

Remark 1. Although this form of Brill–Noether generality was discussed in the original [3], many sources use a
stronger definition of Brill–Generality, which requires a dimension statement as well. For this definition, one works
with the metric graph corresponding to G, and requires that the locus W r

d of degree-d divisor classes of rank at
least r has local dimension exactly (equivalently, at most) ρ(g, r, d) everywhere. We opt for the simpler form of
Brill–Noether generality herein, so that we can work purely graph-theoretically. However, we strongly believe that
all results about Brill–Noether generality of marked graphs generalize exactly as stated if this dimension requirement
is added. Note that the “existential” form of Brill–Noether generality for once-marked graphs we work with here
is still enough to deduce Brill–Noether generality (in the stronger, dimension sense) of algebraic curves specializing
to the graph in question. Indeed, this was the approach of [6], which worked, in effect, with a simplified version of
Brill–Noether generality of marked graphs.

What [6] demonstrated is that, assuming certain genericity conditions on the path lengths of the loops, chains of
loops are Brill–Noether general in this sense.

Nevertheless, a question has remained since [6]: which other families of graphs include Brill–Noether general
graphs? This question has proved remarkably stubborn. Some negative results are known, e.g. [11] identifies
homeomorphism classes of graphs containing no Brill–Noether general graphs, but the chain of loops remained for a
long time the only family of graphs where explicit Brill–Noether general graphs are known in every genus.

Remark 2. It follows from the semicontinuity of Brill–Noether rank [19] that the locus of Brill–Noether general
metric graphs is open in moduli (although it is not dense, in contrast to the algebraic setting). Since a chain of loops
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(without bridges) may deform to a chain of loops and theta graphs, it follows there exist some such metric graphs
that are Brill–Noether general. Choosing an example with rational edge lengths, one can deduce the existence of
Brill–Noether general finite graphs of this type. Since this argument is topological in nature, it does not give specific
examples. The novelty of our paper is in part that we can construct specific examples, as well as examples where
the middle edge length is long compared to the others (indeed, the set of possible ratios n0 : n1 : n2 is dense in the
positive part of P2

R).

Since the publication of [6], chains of loops have proved to be extremely fruitful in proving theorems about general
algebraic curves, including a proof of the Gieseker–Petri theorem [13], work on the maximal rank conjecture [14],
the study of Prym varieties [8, 20], and Hurwitz–Brill–Noether theory [24, 16, 5]. Several of these applications are
summarized in the surveys [12, 15]. They have also proved to be a useful setting for studying Poincaré series and
a tropical analog of Lang’s conjecture [22]. Conceptually, one may interpret this as follows: the fact that chains of
loops are Brill–Noether general is evidence that they are excellent stand-ins for “typical” algebraic curves; therefore
they are excellent graphs to use when attempting to prove theorems about algebraic curves via combinatorial means.

Since the publication of [6], and in light of how useful chains of loops have proven to be, a question presents itself:
what other graphs are Brill–Noether general? We take herein a first step beyond the familiar landscape of chains
of loops, providing the first explicit constructions of Brill–Noether general graphs other than chains of loops. The
newly minted graphs have forms like the example in Figure 1. The precise construction is given in Figure 1.

The reader will observe the similarity with chains of loops: we have merely coalesced some pairs of adjacent loops
into so-called “theta graphs,” on which we must place certain constraints. While this is only a step outside the realm
of chains of loops, it nonetheless breaks the boundary of this class of graphs, and we hope it will provide clues for
future exploration.

1.2 Once-marked graphs and Weierstrass partitions

We now move on to enriched forms of Brill–Noether theory of graphs, in which we keep track of marked vertices.
The choice (G, v) of a graph with a chosen vertex is called a (once-)marked graph, while a choice (G, u, v) of a graph
and two chosen vertices is a twice-marked graph. We will often assume that u 6∼ v as this is a degenerate case, but
this is not required. We first consider one-marked graphs.

Given a once-marked graph (G, v), we enlarge our census questionnaire as follows: when examining a divisor D
on G, we record not just r(D) itself, but also the ranks r(D+ `v), ` ∈ Z, of all divisors obtained by adding a multiple
of the marked vertex.

Although this in principle requires recording infinitely many ranks, we can make our lives easier by only recording
the “excess” beyond the minimum rank predicted by Riemann–Roch. In this way, all these ranks r(D + `v) may be
summarized in a finite combinatorial object, called the Weierstrass partition of D, and denoted λ(D, v). Here by a
partition we mean a nonincreasing sequence (λi(D, v))i≥0 of nonnegative integers, only finitely many of which are
nonzero. The precise definition is as follows. This is phrased differently from the original definition given in [25], but
is readily checked to be equivalent.

Definition 1.4. Let (G, v) be a genus–g graph with a marked vertex v. For any divisor D and integer i ≥ 0, let

si(D, v) = min {` ∈ Z : r(D + `v) ≥ i} .

Note that Riemann–Roch implies that si(D, v) ≤ i+ g− degD for all i ≥ 0, with equality for i� 0. These numbers
are commonly interpreted as pole orders (although some may be negative). The Weierstrass partition of D with
respect to v is the nonincreasing sequence of nonnegative integers λ(D, v) = (λ0(D, v), λ1(D, v), · · · ) defined by

λi(D, v) = i− si(D, v) + g − degD.

The (finite) sum

∞∑
i=0

λi(D, v) is denoted |λ(D, v)|.

With this definition in hand, we may inquire about the following more refined census.

Definition 1.5. For a once-marked graph (G, v), the divisor census is the set of all partitions λ for which there
exists a divisor D with λi(D, v) ≥ λi for all i ≥ 0.

This census is related to the cenus of G (with no marked points) in a simple way: (d, r) belongs to the census of
G if and only if the census of (G, v) includes the “rectangular” partition (g − d + r, g − d + r, · · · , g − d + r, 0, · · · ),
where there are r + 1 copies of g − d+ r. In fact, the analog of the Brill–Noether number is g − |λ|.
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Conjecture 1.6 (Brill–Noether existence conjecture for once-marked graphs). For any once-marked graph (G, u)
genus g, every partition λ with |λ| ≤ g is in the divisor census.

Definition 1.7. A once-marked graph (G, v) is called Brill–Noether general if |λ(D, v)| ≤ g for all divisors D on G.
In other words, every partition in the divisor census has size at most g.

Conjecture 1.6 implies Conjecture 1.2. Like Conjecture 1.2, it is known to hold for metric graphs, although the
only known proof requires algebraic geometry and intersection theory; see Propositions 4.2 and 5.1 of [25].

With suitable genericity hypothesis, a chain of loops with a vertex marked at one end is Brill–Noether general in
this sense, as proved in [25]. This paper constructs new example of Brill–Noether general marked graphs, consisting
of chains that mix loops with theta graphs Example 1.12.

1.3 Twice-marked graphs and transmission permutations

The situation with two marked points is studied in [27]. Given a twice-marked graph (G, u, v), we enlarge our census
further, and inquire about all ranks r(D+ au+ bv) for a, b ∈ Z. As in the once-marked situation, we hope to record
this in a finite combinatorial datum, called a transmission permutation and denoted τu,vD , which we define in Section
2.1.

Two complexities emerge in the twice-marked situation. First, transmission permutations do not always exist:
τu,vD exists if and only if D satisfies a convexity condition called submodularity, defined in Section 2.1. Any divisor
on an algebraic curve is submodular, so it is natural to regard those twice-marked graphs on which all divisors are
submodular as better analogs of twice-marked algebraic curves. Second, on a finite graph, the class [u− v] has finite
order. That is, ku ∼ kv for some positive integer k. The minimum such k is called the torsion order of (G, u, v).
The torsion order has a profound effect on transmission permutations: τu,vD (when it exists) always satisfies the
periodicity property τu,vD (n + k) = τu,vD (n) + k for all n ∈ Z. We will call such permutations extended k-affine, and

denote the group of such permutations by Σ̃k. As explained in [27], a useful analog of the Brill–Noether number can
be constructed by counting the number of inversions of τu,vD up to this periodicity; we denote the resulting count by
invk(τu,vD ); see Section 2.1 for details.

Definition 1.8. A genus g twice-marked graph (G, u, v) for which ku ∼ kv is said to have k-general transmission if
all divisors D are submodular, and satisfy invk(τu,vD ) ≤ g.

Although this definition requires only that ku ∼ kv, i.e. that k is divisible by the torsion order, we will see in
Lemma 4.1 that it implies that k is exactly the torsion order. So in practice we can sometimes be lax in specifying
which k is intended when we say that a twice-marked graph has k-general transmission: the only k that could be
intended is the torsion order.

Example 1.9. If G is a cycle graph, with two marked points u, v joined by two paths of length a and b, then the
torsion order of (G, u, v) is k = a+b

gcd(a,b) and (G, u, v) has k-general transmission [27, §2.1].

Unfortunately, the relationship between k-general transmission and Brill–Noether generality not as simple as one
would like. One way to view the difficulty is that no specific torsion order is “typical.” So the definition of k-general
transmission accepts this and instead specifies the most generic situation given a specific torsion order. Furthermore,
for sufficiently large torsion order, namely k ≥ 1

2g+ 1, we can in fact deduce Brill–Noether generality; this is proved
in Proposition 6.1.

One can also view the study of k-general transmission as a part of Hurwitz–Brill–Noether theory, which studies
the geometry of linear series on general curves of a fixed gonality k. This point of view is explained in [25], though
we do not discuss it in detail here. See [18, 17] for the main results of Hurwitz–Brill–Noether theory for algebraic
curves.

We emphasize that k-general transmission neither implies Brill–Noether generality nor is implied by it in general.
Nevertheless, the two notions are related. We explain in Section 6 how twice-marked graphs with k-general trans-
mission may be used to construct Brill–Noether graphs and once-marked graphs. For now, it suffices to remark that,
when working to understand which twice-marked graphs best represent twice-marked algebraic curves, it is natural
to consider three categories, in order of how well the twice-marked graphs resemble general twice-marked algebraic
curves.

1) Twice-marked graphs with non-submodular divisors.

2) Twice-marked graphs with all divisors submodular, but some with invk(τu,vD ) > g.
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3) Twice-marked graphs of torsion order k with k-general transmission.

Twice-marked graphs in the first category are particularly poor avatars of twice-marked algebraic curves, since
every twice-marked algebraic curve, with no genericity assumptions, have all divisors submodular. Therefore one
should use caution using such graphs to obtain intuition about curves, and our results give some examples of such
behavior.

1.4 Summary of results

This paper is a case study in this classification of twice-marked graphs. Our objects of interest are twice-marked
banana graphs, which we aim to classify into the three categories stated above.

For genus 2 banana graphs, also called theta graphs (as they look topologically like a θ symbol), we obtain quite
precise results. We defer the precise statements until after developing the necessary notation, but the theorem below
summarizes some easy-to-state consequences.

Theorem 1.10. Let (G, u, v) be a theta graph with two marked points.

1) If u and v are located on the interiors of distinct strands of G (as defined in Section 2.1), then all divisors on
G are submodular.

2) If (G, u, v) is evenly marked, meaning that u and v divide their strands into two segments with the same ratio
a
b ∈ Q (see Definition 4.13 for a precise definition), then (G, u, v) has k-general transmission, where k = a+b

gcd(a,b)

is the order of [u− v] ∈ Jac (G).

The two parts of Theorem 1.10 follow directly from Theorem 3.3 and Corollary 4.15, respectively. Part 1 becomes
bi-conditional once a few cases are added, and part 2 is an example where we can apply a “non-recurrence criterion,”
Theorem 4.7, that is tractable to verify for evenly marked theta graphs. We are optimistic that non-recurrence should
be tractable to verify in other cases as well, and that a complete classification of genus 2 twice-marked graphs may
be possible, but some new ideas are needed.

Theorem 1.10 provides a large family of new genus 2 twice-marked graphs with k-general transmission for any
value of k. We can then use these to construct many new examples of Brill–Noether graphs and once-marked graphs
by coupling these constructions, and Example 1.9, with the following theorem, proved in Section 6.

Theorem 1.11. Let (Gi, ui, vi), for i = 1, 2, · · · , `, be a sequence of ` twice-marked graphs, and (G, u, v) = (G, u1, v`)
the iterated vertex gluing (see Section 2.1). Let gi and ki be the genus of Gi and torsion order of (Gi, ui, vi),
respectively.

1) If ki > g1 + g2 + · · ·+ gi for all i, then (G, v) is a Brill–Noether general marked graph.

2) if ki > min {g1 + g2 + · · · gi, gi + gi+1 + · · ·+ g`} for all i, then G is a Brill–Noether general graph.

Remark 3. As a degenerate case, Theorem 1.11 shows that a single twice-marked graph (G, u, v) with k-general
transmission is Brill–Noether general provided that k > g. In fact, we prove in Proposition 6.1 that k ≥ 1

2g + 1 is
sufficient; that bound is sharp. We strongly believe that one can refine the bound in Theorem 1.11 so that it gives
this sharper bound in the ` = 1 case, but we have not attempted to do so here in order to simplify the statements
and arguments.

Example 1.12. Consider the graph in Figure 1. Regard it as a twice-marked graph with the leftmost and rightmost
thick vertices marked. This graph is a chain of 5 twice-marked graphs (Gi, ui, vi), 1 ≤ i ≤ 5. Some attachments are
vertex gluings, while others include a bridge; as we discuss below this does not affect Brill–Noether generality. The
five twice-marked graphs are as follows. Use some notation to be officially defined later in the paper.

(G1, u1, v1) is a cycle (g1 = 1), with the marked points joined by paths of length 3 and 1. By Example 1.9, the
torsion order is k1 = 3+1

gcd(3,1) = 4, and we have 4-general transmission.

(G2, u2, v2) = (θ4,1,4, x1, z1) is an evenly marked theta graph (g2 = 2), with edges divides in the ratio 1
3 , so by

Theorem 1.10 it has torsion order k2 = 1+3
gcd(1,3) = 4 and 4-general transmission.

(G3, u3, v3) is a cycle with 3+2
gcd(3,2) = 5-general transmission.

(G4, u4, v4) = (θ5,2,10, x2, z4) is an evenly marked theta with 2+3
gcd(2,3) = 4+6

gcd(4,6) = 5-general transmission. Note

that in this case, the marked strands do not have equal length, but they are cut in the same ratio.
(G5, u5, v5) = (θ6,2,3, x4, z2) is an evenly marked theat with 4+2

gcd(4,2) = 2+1
gcd(2,1) = 3-general transmission.
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The genera are (g1, g2, g3, g4, g5) = (1, 2, 1, 2, 2), , and the torsion orders are (k1, k2, k3, k4, k5) = (4, 5, 5, 5, 3).
Since k1 > g1, k2 > g1 + g + 2, k3 > g1 + g2 + g3, k4 > g4 + g5, and k5 > g5, it follows from Theorem 1.11 that this
graph is Brill–Noether general.

It is straightforward to construct many graphs of this type, blending cycles and evenly-marked thetas to taste.

Our original motivation for this paper was to understand theta graphs, with the goal of classifying genus 2 twice-
marked curves. In the course of this work, it become clear that our methods generalize readily to banana graphs
of all genera, so our remaining results concern banana graphs of genus g ≥ 3. However, a stark difference emerges
in our results: banana graphs of genus g ≥ 3 almost never have k-general transmission, and in fact usually have
non-submodular divisors.

Theorem 1.13. Let (G, u, v) be a banana graph of genus g ≥ 3, marked at two vertices u, v, at least one of which
lies at least distance 2 from both multivalent vertices. Then there exist non-submodular divisors on (G, u, v).

Theorem 1.13 follows immediately from the more precise Theorem 3.8. It leaves only a few special cases left
where k-general transmission might be possible. We rule most of these out as well, and prove the following Theorem
as part of Corollary 6.3.

Theorem 1.14. A twice-marked banana graph of genus g ≥ 3 does not have k-general transmission for any k ≥ 3.

In fact, we show in Section 4 that most banana graphs of genus g ≥ 3 are extremely far from k-general transmission:
even in cases where all divisors are submodular, not only do these graphs possess transmission permutations with
more than g k-inversions, they possess transmission permutations whose number of k-inversions grows at least
quadratically in g. We defer the precise statements and hypotheses to Section 4.4.

Sections 4.4 and 5 also contain several computations of transmission permutations on banana graphs displaying
some intriguing structure. Though we do not need to exploit all of this structure for our results, we have shown it
in some detail due to some intriguing patterns that emerge, that may be suggestive of additional structure within
transmission permutations. We hope this case study may be informative for future work on the topic.

Remark 4. Readers familiar with the moduli space of tropical curves may not be surprised that genus g ≥ 3 banana
graphs do not behave like general graphs, since they belong to a highly special stratum. Indeed, a genus g banana
graph has g + 1 strands, hence such graphs occupy a (g + 1)-dimension stratum in the moduli space, i.e. a stratum
of codimension (3g − 3) − (g + 1) = 2g − 4. The codimension is the same after marking two points. So for g > 2
banana graphs are “special.”

Another important way in which banana graphs are special is that they are always hyper-elliptic: they possess
a degree 2 divisor or rank 1, consisting of the two non-bivalent vertices. For g ≥ 3 this shows that they are not
Brill–Noether general, since ρ(g, 1, 2) = 2− g.

2 Background

2.1 Conventions and useful facts

We opt for the conventions that [k] is the set {0, . . . , k − 1} and N := {1, 2, . . .}.

Definition 2.1 (Graph). We assume the convention that a graph G is finite, connected, and loopless, possibly with
parallel edges. The set of vertices will be donated V (G) and the set of edges E(G). The valence of a vertex, denoted
val (v) is the number of edges incident to v. We refer to vertices v with val (v) ≥ 3 as multivalent vertices. We take
the genus g of a graph to be |E(G)| − |V (G)|+ 1.

Definition 2.2. If (G1, u1, v1), (G2, u2, v2) are twice-marked graphs, we may obtain a new twice-marked graph
(G, u1, v2) by taking the disjoint union of G1 and G2 and identifying v1 and u2. We refer to the new graph as the
vertex gluing of (G1, u1, v1) and (G2, u2, v2).

Given a sequence
(

(Gi, ui, vi)
)
1≤i≤`

of ` twice-marked graphs, the iterated vertex gluing is the graph obtained

by taking (G1, u1, v1), then successively forming the vertex gluing with (G2, u2, v2), · · · (G`, u`, v`).

From the standpoint of Brill–Noether theory on finite graphs, it suffices to study graphs which are bridgeless
(i.e. 2-edge connected). Every graph G admits a retraction to a bridgeless graph which gives a rank preserving
isomorphism between the Picard groups, so we are not missing anything by focusing solely on bridgeless graphs. A
convenience of this setting is the following lemma.
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Lemma 2.3. If G is a bridgeless graph then

1) If u, v ∈ V (G) then u = v if and only if u ∼ v;

2) There is a bijection between degree 1 rank 0 divisors in Pic (G) and vertices in V (G).

Throughout this paper, we will sometimes replace graphs with their bridgeless contraction without further com-
ment. In particular, when performing vertex gluing, we may just as well attach the glued vertices by a path of any
length (see e.g. Figure 1) with no meaningful changes to the divisor theory.

Definition 2.4 (Banana-Graph). For n0, . . . , ng ∈ N we define the banana graph Bn0,...,ng to be the graph obtained
by connecting two vertices with g + 1 paths of length n0, . . . , ng. The resulting graph has genus g. In the genus 1
case this is simply a cycle graph of length n0 + n1. In the case where g = 2 we refer to such graphs as theta graphs
and denote them θn0,n1,n2 . Label one of the higher valence vertices v0,0 and the other v0,n0 . Label the vertex a
distance i from v0,0 along the α-th path as vα,i. Note the higher valence vertices have more than one label:

vα,0 = vβ,0 and vα,nα = vβ,nβ∀α, β ∈ {0, . . . , g} .

All other vertices are uniquely labeled. We define vα,i := vα,nα−i (in the genus 2 case, this coincides with the
usual dual KG − vα,i up to linear equivalence). In the special case of theta graphs we adopt the notation that
xi := v0,i, yi := v1,i, and zi := v2,i to simplify typography. We refer to the collection of vertices vα,0, vα,1, . . . , vα,nα
as the α-th strand of our graph. The high valence vertices are thus on all strands simultaneously.

Definition 2.5. We define δ(P ) for a proposition P to be the indicator function which is 1 when P holds and 0
when P does not.

Definition 2.6. A twice-marked graph (G, u, v) is a graph with a choice of two distinguished vertices u, v. The
torsion order of (G, u, v) is the order of [u− v] as an element of Jac (G), i.e. the minimum k ∈ N such that ku ∼ kv.

Definition 2.7. A twist of a divisor D on a twice-marked graph (G, u, v) is a divisor of the form D + au + bv,
a, b ∈ Z.

Definition 2.8. For a divisor D on (G, u, v) we define

∆(D) := r(D)− r(D − u)− r(D − v) + r(D − u− v).

Although suppressed in the notation, this function depends on the choice of marked points u, v.

Definition 2.9. [27] A divisor D on (G, u, v) is submodular with respect to u, v if ∆(D′) ≥ 0 for all twists D′ =
D + au+ bv.

Definition 2.10. A permutation is a function τ : Z→ Z. Given k ∈ N, permutations satisfying τ(n+ k) = τ(n) + k

for all n ∈ Z form a group denoted Σ̃k, referred to as the extended affine symmetric group.

Definition 2.11. [27] Given a twice-marked graph (G, u, v), letD be a divisor in Div (G). If it exists, the transmission
permutation of D, denoted τu,vD is the unique bijection τu,vD : Z→ Z which satisfies, for all a, b ∈ Z,

δ(τu,vD (b) = a) = ∆(D + au− bv).

Lemma 2.12. [27, Remark 1.5, Proposition 2.3] A divisor D on (G, u, v) has a well-defined transmission permutation

if and only if it is submodular. If (G, u, v) has torsion order k, or more generally if ku ∼ kv, then τu,vD ∈ Σ̃k. The
transmission permutation is also characterized by the following two equations, which are equivalent. For all a, b ∈ Z:

r(D + au− bv) + 1 = #{` ≥ b : τu,vD (`) ≤ a},
r(KG −D − au+ bv) + 1 = #{` < b : τu,vD (`) > a}.

Definition 2.13 ([27]). Given a permutation τ , an inversion is a pair (a, b) ∈ Z2 such that a < b and τ(a) > τ(b).
For a given k ∈ Z, we say that two inversion (a, b), (a′, b′) are k-equivalent if a−a′ = b−b′ and a−a′ ≡ 0 mod k. We
write Invk(τ) for the set of k-equivalence classes of inversion of τ and invk(τ) for # Invk(τ). We call the equivalence
classes k-inversions.
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2.2 Jacobians of Banana Graphs

In this section we characterize the Jacobians of Banana graphs of genus ≥ 2.

Proposition 2.14. Given n0, . . . , ng ∈ N≥1, there is an isomorphism

Jac
(
Bn0,...,ng

) ∼= Zg+1/〈(1, 1, . . . , 1), (n0,−n1, 0, . . . ), (n0, 0,−n2, 0, . . . , 0), . . . , (n0, 0, . . . , 0,−ng)〉.

under which the coset [a0, · · · ag] of (a0, · · · , ag) ∈ Zg+1 is identified with the divisor
∑g
α=0[vα,aα − v0,0], assuming

that 0 ≤ aα ≤ nα for all α (so that vα,nα is a well-defined vertex).

Proof. Here and throughout the sequel we write (a0, . . . , ag) for an element of Zg+1 and [a0, . . . , ag] for an element
of the quotient. Let J := Jac

(
Bn0,...,ng

)
and

K := 〈(1, 1, . . . , 1), (n0,−n1, 0, . . . ), (n0, 0,−n2, 0, . . . , 0), . . . , (n0, 0, . . . , 0,−ng)〉 ⊆ Zg+1.

We claim that there is an isomorphism φ : Zg+1/K → J characterized by the formula

[a0, . . . , ag] 7→
g∑

α=0

aα[(vα,1 − v0,0)]. (1)

We must check that φ is well-defined, injective, and surjective. We check all three by first considering a map
φ̃ : Zg+1 → Div0(G) defined by (a0, · · · , ag) 7→

∑g
α=0 aα(vα1

− v0,0). This is transparently a homomorphism.

If we verify that φ̃ sends all generators of K to principal divisors, then it will follow that φ̃ induces a well-defined
homomorphism φ obeying the desired formula. To see this, first note that φ̃(1, · · · , 1) is the principal divisor obtained
by a single chip-firing move at v0,0. Second, note that we have

aα(vα,1 − v0,0) ∼ vα,aα − v0,0 for all 0 ≤ aα ≤ nα. (2)

This follows by induction and the observation that vα,i+1 − vα,i ∼ vα,i − vα,i−1 for all 1 ≤ i ≤ nα − 1, which results
from chip-firing the vertex vα,i. This implies that, if eα ∈ Zg+1 denotes the αth standard basis vector, we have

φ̃(aαeα) ∼ vα,nα − v0,0 = v0,n0 − v0,0. This does not depend on α; it follows that all other generators of K are sent

by φ̃ to principal divisors. Hence φ̃ induces a well-defined homomorphism φ : Zg+1/K → J obeying Equation (1).
To check injectivity, we use useful coset representatives of Zg+1/K. Every element of Zg+1/K has a representative

(a0, . . . , ag) (in fact, a unique representative) satisfying the following three conditions.

1) 0 ≤ aα ≤ nα for all α ∈ {0, . . . , g},

2) There exists α such that aα = 0, and

3) If aα = nα and aβ = 0, then α < β.

Call an element (a0, · · · , ag) satisfying these conditions reduced. To reduce an arbitrary element of Zg+1 to an
element obeying the first two conditions, one can repeatedly follow these steps: add a multiple of (1, · · · , 1) so that
all coordinates are nonnegative and at least one is zero; reduce any coordinate aα > nα by nα while replacing a
coordinate aβ = 0 by nβ . Then to satisfy the third, one can “left-justify” all coordinates with aα = nα while moving
0s to the right.

Now, if (a0, · · · , ag) is reduced, Equation (2) implies that

φ([a0, · · · , ag]) =

g∑
α=0

[vα,aα − v0,0]. (3)

It follows from Dhar’s burning algorithm that the divisor
∑g
α(vα,aα − v0,0) is in fact v0,0-reduced: the number of

chips at v0,n0
is strictly less than the number of strands with no interior chips, so both multivalent vertices burn; all

other strands have at most one chip in their interior and burn from both ends. Therefore this divisor is not principal
unless a0 = a1 = · · · ag = 0. This shows that φ is injective.

Finally, note that J is generated by the classes [vα,aα − v0,0], which are all in the image of φ by Equation (3). So
φ is surjective, and therefore an isomorphism.
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Remark 5. The proof above in fact gives an explicit bijection between reduced elements of Zg+1 and degree-0 v0,0-
reduced divisors on Bn0,··· ,ng . In fact, if we add gv0,0 to these reduced representatives, we obtain all break divisors,
in the sense of [23, §4.5], and also studied in [1]. It is a pleasant feature of banana graphs that these two ways to
give canonical representatives of degree-g divisors classes, v0,0-reduced divisors and break divisors, coincide and are
neatly parameterized by this subset of Zg+1.

Remark 6. While we require that each strand must have non-zero length to make later arguments easier, it’s worth
considering the limiting case where one of the strands has length 0. Combinatorially this should corresponds to
passing from a banana graph of genus g to a bouquet of g cycles. Indeed, if n0 = 0 then we get

Zg+1/〈(1, . . . , 1)(0, n1, 0, . . . , 0), (0, 0, n2, 0, . . . , 0), . . . , (0, . . . , 0, ng)〉 ∼=
g∏

α=1

Z/nαZ.

Which is the expected description of the Jacobian of a bouquet of cycles.

In genus 2, we can restrict even further and go down another dimension.

Proposition 2.15. For a theta graph θa,b,c we have Jac (θa,b,c) ∼= Z2/〈(a+ c, c), (−a, b)〉.

Proof. As we established above,

Jac (θa,b,c) ∼= Z3/〈(a, 0,−c), (a,−b, 0), (1, 1, 1)〉.

There is a map φ : Z3 → Z2/〈(a+ c, c), (−a, b)〉 given by (x, y, z) 7→ (x− z, y − z). Clearly

N := 〈(a, 0,−c), (a,−b, 0), (1, 1, 1)〉 ⊆ ker (φ)

so φ descends to a surjection from the quotient: φ̃ : Z3/N → Z2/〈(a + c, c), (−a, b)〉. For injectivity note that if
(x, y, z) ∈ ker (φ) then this implies that

(x− z, y − z) = m(a,−b) + n(a+ c, c).

From this we can write:

(x, y, z) = (z +ma+ n(a+ c), z −mb+ nc, z) = (z + nc)(1, 1, 1) +m(a,−b, 0) + n(a, 0,−c) ∈ N.

Remark 7. An advantage of this two-dimensional discrete torus presentation of the Jacobian is that it can be easily
identified with the lattice points of a parallelogram as in Figure 2 or a hexagon as in Figure 3, each with the
opposing parallel sides identified. These figures can also be inferred from Figure 1 of [1]; in particular the hexagon
presentation is naturally divided into three parallelograms corresponding to three different types of degree-2 break
divisors. In both representations, it is easy to see a copy of V (G) sitting inside of Jac (G) through the Abel-Jacobi
map, first studied in [4]. Thus the number of elements of the Jacobian is given by counting lattice points inside these
polygons, accounting for identified boundary points. By Pick’s theorem, this value equals the area of either of these
polygons, namely ab + ac + bc. These identification space representations of the Jacobian are helpful for thinking
about progressions of the form n(u− v) which correspond to straight paths along the torus.

Definition 2.16 (Abel-Jacobi Map). For a graph G with a fixed base point v0 we define the Abel-Jacobi map
Sv0 : V (G)→ Jac (G) by v 7→ [v − v0].

2.3 Rank Computations on Banana Graphs

In this section we develop some results which expedite rank computations on banana graphs. We first recall the
notion of a rank determining set, introduced by Luo in [21].

Definition 2.17. Given a set A ⊆ V (G) we define RA(D) to be −1 if |D| = ∅ and RA(D) ≥ r if |D − E| 6= ∅ for
every effective divisor of degree r supported on A. A set A is a rank determining set if rA(D) = r(D) for all divisors
D.

Lemma 2.18. For any banana graph G = Bn0,...,ng , the divisor v0,0 + v0,n0
has rank 1.

9



(0, 0)

(−a, b)

(c, b+ c)

(a+ c, c)

x1 x2 x3

y1

y2

y3

z1

z2

z3

z4

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Figure 2: A fundamental domain of Jac (θ3,4,5). The dashed upper left and upper right side indicate identification
with the corresponding opposite side. The Abel-Jacobi embedding Sx0 : V (G) ↪→ Jac (G) is also visualized through
the labeled vertices xi, yi, zi and dotted edges connecting them.
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Figure 3: A depiction of an alternative fundamental domain of Jac (θ3,4,5). As above the dashed sides indication
identification with the corresponding opposite side and the Abel-Jacobi embedding Sx0

is visualized inside the
diagram.
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Figure 4: The transformation between the parallelogram and hexagon fundamental domains for Jac (θ3,4,5) along
with the Abel-Jacobi embedding Sx0

. Note that this transformation has two steps, the relocation of the triangles
along the vectors (−a, b) and (a+ c, c) respectively, and the translation of the whole diagram along (a, 0). As above
opposite sides of each diagram are identified.

Proof. For all α and indices i, j with 0 ≤ i < j ≤ nα, chip-firing the set {vα,k : i < k < j} shows that

vα,i+1 + vα,j−1 ∼ vα,i + vα,j .

It follows by induction that, for all 0 ≤ i ≤ nα, we have

v0,0 + v0,n0
= vα,0 + vα,nα ∼ vα,i + vα,nα−i.

Hence every vertex vα,i is included in some divisor linearly equivalent to v0,0 + v0,n0
.

Lemma 2.19. For any banana graph G = Bn0,...,ng the set {v0,0, v0,n0
} is a rank determining set.

Proof. Let W := {v0,0, v0,n0
}. By [21, Proposition 3.1] the lemma is equivalent to the claim that rW (D) ≥ 1 implies

r(D) ≥ 1 for all D ∈ Div (G). Fix a divisor D and suppose rW (D) ≥ 1. If d := degD > g then this result is trivial by
Riemann–Roch so assume d ≤ g. The fact that rW (D) ≥ 1 implies that d ≥ 2. Moreover there exists some effective
divisor E such that D ∼ E + v0,0. If |E − v0,n0

| is non-empty then r(D) ≥ r(v0,0 + v0,n0
) ≥ 1 (by Lemma 2.18) so

suppose this is not the case. Up to reordering the strands, this implies that we can write

E ∼ av0,0 +

d−2−a∑
α=0

vα,aα ,

where a ∈ {0, . . . , d− 1} and 0 < aα < nα. This in turn implies that D ∼ (a + 1)v0,0 +
∑d−2−a
α=0 vα,aα . However

because d ≤ g, we see by Dhar’s burning algorithm that (a + 1)v0,0 +
∑d−2−a
α=0 vα,aα − v0,n0

is v0,n0
-reduced and

ineffective, contradicting rW (D) ≥ 1. Thus r(D) ≥ 1 and W is a rank determining set.

Remark 8. The upshot of Lemma 2.19 is that the divisors with the highest rank relative to their degree are those
with the most chips evenly concentrated at the high valence vertices (in some representative of the divisor class). In
particular if u = v0,0 and v = v0,n0

the sequence

0, u, u+ v, 2u+ v, 2u+ 2v, 3u+ 2v, 3u+ 3v, . . . , (g − 1)u+ (g − 2)v, (g − 1)u+ (g − 1)v

is a sequence of divisors of degree 0, 1, . . . , 2g − 2 each of which has maximal rank. Another similar sequence can be
obtained by transposing u, v above.

As the following lemma notes, v0,0-reduced divisors on banana graphs have a particularly nice form.

Lemma 2.20. If D ∈ Div
(
Bn0,...,ng

)
is v0,0 reduced then D = av0,0 + bv0,n0

+E where E is an effective divisor with
at most one chip on each strand, 0 ≤ b ≤ g − degE. As with all reduced divisors, r(D) ≥ 0 if and only if a ≥ 0.
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Whenever we write D = av0,0 + bv0,n0 + E we mean that D is v0,0-reduced. We use these representatives to
compute ranks of any effective divisor on a banana graph in the following corollary.

Corollary 2.21. If D = av0,0 + bv0,n0 + E is an effective v0,0-reduced divisor then

r(D) = min {a, b}+ max {0,max {a, b} − (g − degE)} .

If we assume without loss of generality that a ≥ b this collapses to the easier to read r(av0,0 + bv0,n0 + E) =
b+ max {0, a− (g − degE)} .
Proof. Note that there is an automorphism of any banana graph sending vα,i → vα,i, which induces a rank preserving
automorphism of the Picard group. Thus either a ≥ b or we can replace D with it’s automorphic image bv0,0 +
av0,n0

+ E′ which is still v0,0 reduced and has at least as many chips at v0,0 as at v0,n0
. Thus we assume without

loss of generality that a ≥ b. Let e := degE. If a ≤ g − e then this is an easy consequence of Lemma 2.19. Now
suppose a > g − e and consider some effective divisor L of degree a + b − (g − e). By Lemma 2.19 we may assume
that L = xv0,0 + y0,n0 where x, y ≥ 0. Now we claim that D−L = (a−x)v0,0 + (b− y)v0,n0 +E is linearly equivalent
to an effective divisor. To see this we consider two cases.

Case I: a− x ≤ g − e
This implies that b− y ≥ 0 and we have that

a− x = y − b+ (g − e) ≥ y − (g − e) + (g − e) = y ≥ 0.

Thus D − L is effective.
Case II: a− x > g − e.
Then we have that −(a− (g− e)) ≤ b− y < 0. We proceed by induction on the value of b− y. If b− y = −1 then

D − L is clearly effective and we are done. Now suppose that b− y < −1. Then note that

(a− x)v0,0 + (b− y)v0,n0 + E ∼ ((a− (g + 1− e))− x)v0,0 + ((b+ n)− y)v0,n0 + E′

where 1 ≤ n ≤ g+1 and E′ is an effective divisor with at most one chip on each strand of degree e′ := e−n+(g+1−e) =
g + 1− n. Let a′ := a− (g + 1− e) and b′ := b+ n. Clearly a′ − x ≥ 0 so if b′ − y ≥ 0 then we’re done. Otherwise
note that

−(a′ − (g − e′)) = −(a− (g + 1− e)− (n− 1)) = −(a− (g − e)) + n ≤ (b− y) + n = b′ − y.

Lastly,

(a′ − x)− (g − e′) = (a− (g + 1− e)− x− (n− 1)) = a− (g − e)− x− n = y − b− n = y − b′ > 0

Thus we are in the same situation as before, except b′ − y > b− y so by induction we done.
This shows that r(av0,0 + bv0,n0

+ E) ≥ a+ b− (g − e). To conclude note that

av0,0 + bv0,n0
+ E − [(a− (g − e))v0,0 + (b+ 1)v0,n0

] = (g − e)v0,0 + E − v0,n0

which is clearly ineffective, thus proving the corollary.

The moral of Corollary 2.21 is that the rank of a divisor on a banana graph depends only on the number of chips
on the multivalent vertices and the number of chips on the strands, but not their positions on those strands. Using
Corollary 2.21 we can isolate some specific characteristics of the ∆ function on various twice-marked banana graphs
that we will later use to find values of some transmission permutations. These result can be generalized in a number
of ways but we focus on only the cases we actually need to streamline the argument.

Corollary 2.22. Given a twice-marked banana graph (Bn0,...,ng , u, v), we have the following statements about ∆.

1) If (u, v) = (v0,0, v0,n0
) and a ≥ 0 then

∆(a(v0,0 + v0,n0
)) = δ(a ≤ g).

2) If (u, v) = (v0,0, v0,n0−1) with 0 ≤ b < a ≤ g and 0 < n < n0 − 1 then

∆(av0,n0) = ∆(b(v0,0 + v0,n0) + v0,n) = 1; ∆(av0,0 + bv0,n0 + v) = δ(a = g).

3) If (u, v) = (v0,1, v1,n1−1) if 0 ≤ a ≤ g − 2, 2 ≤ m ≤ n0 − 1, and 1 ≤ n ≤ n1 − 2 then

∆(a(v0,0 + v0,n0
) + v0,m + v1,n) = 1.

If 0 ≤ b < g and then

∆(bv0,n0
+ v0,n) = 1; ∆((g − 1)v0,0 + bv0,n0

+ v + v0,m) = ∆(b(v0,0 + v0,n0
) + v0,m + v1,n) = δ(b < g − 1).

Proof. This is a straightforward consequence of Corollary 2.21.
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3 Submodularity on Banana Graphs

As established in [27], and mentioned in Lemma 2.12, the existence of transmission permutations is governed by a
convexity condition called submodularity. A key question for this approach to Brill–Noether theory is: for which
graphs are all divisors submodular? In this section we study the special case of banana graphs. The key results are
that in genus 2, there exists a relatively straightforward condition on the marked points such that every divisor is
submodular. For genus 3 and above, we can construct a non-submodular divisor on any twice-marked banana graph
with only a few exceptions.

Definition 3.1. For a divisor D, the support complex of D is the set of vertices to which D can transmit chips while
remaining effective. Formally,

Supp(D) = {v ∈ V (G) : r(D − v) ≥ 0} .

Note that if |D| = ∅ then Supp(D) = ∅.

For theta graphs, when submodularity fails, we can always find a rank 0 example due to the Riemann–Roch
theorem and the Clifford bound. The following lemma identifies such divisors.

Lemma 3.2. Suppose we have a twice-marked graph (G, u, v) with r(D) = 0. Then ∆(D) < 0 if and only if
v ∈ Supp(D) \ Supp(D − u) and u ∈ Supp(D) \ Supp(D − v).

Proof. By construction we know that r(D−v) = r(D−u) = 0, so u, v ∈ Supp(D). Further, because r(D−u−v) = −1,
v 6∈ Supp(D − u) and u 6∈ Supp(D − v). The other direction also follows directly from the definitions.

3.1 The Genus 2 Case

We give a complete classification of theta graphs on which all divisors submodular. The following Theorem gives a
more precise version of part 1) of Theorem 1.10 from the introduction.

Theorem 3.3. Suppose G = θn0,n1,n2
, with (G, u, v) a twice-marked theta graph with u 6∼ v. Then the following are

equivalent:

1) There exists divisors D with ∆(D) < 0;

2) The marked points u, v are on the same strand, so without loss of generality u = vα,i, v = vα,j. Further the set
N(G,u,v) := {vα,k : k 6= nα − i, k 6= j, j − i ≤ k ≤ j − i+ nα} is non empty. In particular there is a bijection:

N(G,u,v) → {[D] ∈ Pic (G) : ∆(D) < 0}
vα,k 7→ [vα,k + vα,i].

Remark 9. As a heuristic, Theorem 3.3 says that the only twice-marked theta graphs with non-submodular divisors
are those for which the marked points are too “close” together, where points on the same strand are considered close.
In this sense the degenerate case u ∼ v is a special case of the failure of submodularity described in the theorem.

Lemma 3.4. On a banana graph Bn0,...,ng if r(vα,i + vβ,j − vγ,k) = 0, then one of the following holds:

1) vα,i = vγ,k i.e. (α, i) = (γ, n);

2) vβ,j = vγ,k i.e. (β, j) = (γ, k);

3) vα,i = vβ,j i.e. (α, i) = (β, nα − j);

4) vα,i, vβ,j , and vγ,k are all on the same strand, i.e., α = β = γ.

Proof. Let D = vα,i + vβ,j − vγ,k. Suppose r(D) = 0 and 1), 2) and 3) do not hold. If α 6= β then D is vγ,n reduced
and ineffective thus α = β. If α 6= γ then since 3) does not hold then

D ∼

{
vα,0 + vα,i+j − vγ,k i+ j < nα

vα,i+j−nα + vα,nα − vγ,k i+ j > nα
.

Since these are both vγ,k reduced and ineffective we conclude that α = β = γ.
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Proof of theorem 3.3. This theorem is largely a consequence of Lemma 3.2, and Lemma 3.4.
Suppose D is a divisor on (G, u, v) with ∆(D) < 0. Riemann–Roch implies that r(D) = 0,degD = 2. Note that

D− u is a rank 0 degree 1 divisor, so by Lemma 2.3 there is a unique vertex w such that D− u ∼ w. Thus D− v is
a rank 0 divisor equivalent to w + u− v. The facts that u 6∼ v, that v 6∈ Supp(D − u), and that r(D) = 0, rules out
possibilities 1), 2), and 3) respectively of Lemma 3.4 so we can conclude that u, v, w are on the same strand. Without
loss of generality, let w = vα,k, u = vα,i. Note that because r(D) = 0, we get that i+ k 6= nα. Applying Lemma 3.2,
we see that

v ∈ Supp(D) \ Supp(D − u) = {vα,j : j 6= k, i+ k − nα ≤ j ≤ i+ k} .

So we can write v = vα,j with the conditions on j as above. Reformulating this condition in terms of k, we see that
k 6= nα − i, j and j − i ≤ k ≤ j − i+ nα, as desired.

For the other direction, if vα,k ∈ N(G,u,v), let D = vα,i + vα,k. Then we have that r(D) = δ(i+ k = nα) = 0 and
that

Supp(D) \ Supp(D − u) = {vα,` : ` 6= k, i+ k − nα ≤ ` ≤ i+ k} 3 vα,j = v;

Supp(D) \ Supp(D − v) = {vα,` : ` 6= i+ k − j, i+ k − nα ≤ ` ≤ i+ k} 3 vα,i = u.

By Lemma 3.2 this implies ∆(D) < 0. These constructions are evidently inverses to one another.

Corollary 3.5. Given a theta graph (G, vα,i, vβ,j) every divisor is submodular if and only if

1) The marked vertices are not on the same strand i.e. α 6= β, or

2) The marked vertices are on the same strand, so α = β and assuming without loss of generality that i < j

a) i = 0, j ∈ {nα − 1, nα} or,

b) i = 1, j = nα.

So other than a few exceptional cases, requiring every divisor to be submodular forces the marked points to be
on different strands.

The characterization of non-submodularity on theta graphs obtained above can also be applied to the semide-
generate case of the chain of two loops.

Proposition 3.6. On a chain of two loops, very divisor is submodular if and only if the marked points are on distinct
loops or if nα = 2 and {u, v} = {vα,0, vα,1}.

Proof. The case of marked points on distinct loops is precisely what arises from gluing two twice-marked cycles as
in [27] which was shown to be submodular in Lemma 2.5 and Theorem 3.11 of that paper. If the marked points are
on the same loop of length at least 3 then if w is any other vertex on that loop, then ∆(u+ w) = −1. On the other
hand if the α-th loop is length 2 and without loss of generality (u, v) = (vα,1, vα,0) then any putative non-submodular
divisor must satisfy D ∼ u+ w. Thus by Lemma 3.2, v ∈ Supp(D) \ Supp(D − u) = {u}, a contradiction.

Before moving on, we mention another immediate consequence of Lemma 3.4 that will be useful later.

Corollary 3.7. If u, v are vertices on Bn0,··· ,ng that do not lie on the same strand, then Supp(u+ v) = {u, v}.

3.2 Banana Graphs of Genus ≥ 3

Unfortunately, the picture is not as nice for higher genus banana graphs. As the following result shows the presence
of additional strands allows non-submodular divisors to appear for most banana graphs of higher genus. We prove
the following, which implies the simplified Theorem 1.13 from the introduction.

Theorem 3.8. Let (G, u, v) = (Bn0,...,ng , vα,i, vβ,j) be a banana graph of genus g ≥ 3. Then we have the following
classification for non-submodular divisors on G. Either

1) One of the following possibilities holds :

a) α = β and up to swapping u, v, (i, j) ∈ {(0, nα), (1, nα), (0, nα − 1)};
b) α 6= β and up to reversing the order of the vertices along each strand (i, j) = (1, nβ − 1), or

2) There exist divisors D ∈ Div (G) such that ∆(D) < 0.
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•

•

. . .

{v0,0, v0,n0
}

·

•

. . .

{v0,1, v0,n0
}

•

·

. . .

{v0,0, v0,n0−1}

·

·

. . .

{v0,1, v1,n0−1}

Figure 5: The four possibilities not precluding failure of submodularity on banana graphs of genus ≥ 3. The large
dots indicate the locations of the marked points and the ellipses indicate the possible presence of additional strands.

The four possibilities enumerated in part 1) of the theorem are euphemistically illustrated in Figure 5.

Proof. As suggested by the proof statement we consider two possibilities depending whether u, v are on the same
strand. In each case we show that if the conditions in part 1) do not apply then we can construct a non-submodular
divisor.

First suppose that u, v are not on the same strand. If nα = 2 then i = 1, otherwise up to relabelling, we may
assume that i < nα − 1. If j < nβ − 1 consider the divisor D := vα,1 + vα,i + vβ,nβ−1. This is rank 0 by inspection
and we have that

r(D − u) = r(vα,1 + vβ,nβ−1) = 0;

r(D − v) = r(vα,i+1 + vβ,nβ−1−j) = 0;

r(D − u− v) = r(vα,i+1 + vβ,nβ−1−j − vα,i) = −1.

On the other hand if j = nβ − 1 and i 6= 1 then consider the divisor D := vα,i + vα,nα−1 + vβ,1. Again this is rank 0
by inspection and further computations reveal that

r(D − u) = r(vα,nα−1 + vβ,1) = 0;

r(D − v) = r(vα,i−1 + vβ,2) = 0;

r(D − u− v) = r(vα,i−1 + vβ,2 − vα,i) = −1.

Thus if u, v are on different strands we can construct non-submodular divisors except when i = 1, j = nβ − 1.
On the other hand, if α = β then up to swapping u, v we may assume that i ≤ j. Then, the analysis of

Corollary 3.5 shows that unless (i, j) ∈ {(0, nα), (1, nα), (0, nα − 1)} we can always construct a non-submodular
divisor.

4 k-General Transmission in Banana Graphs

In this section we first give an explicit description of transmission permutations which arise on theta graphs, framed
in terms of effective representatives of twists in degree 2. Next we give an abstract condition called non-recurrence
which we show is equivalent to k-general transmission in genus 2. We then use non-recurrence to deduce general
transmission for a family of well behaved theta graphs. Lastly, we analyze general transmission on banana graphs of
genus ≥ 3, concluding that they in general fail to have general transmission.

Remark 10. A natural question to ask about k-general transmission is whether it depends the order of the pair of
marked vertices. Clearly ∆(D) is symmetric in u, v so the first condition does not and by Riemann–Roch we have
that

δ(τu,vD (b) = a)) = δ(τv,uKG−D+u+v(a) = b).

Thus permuting the marked vertices merely permutes the set of transmission permutations, so k-general transmission
is invariant under such a swap. The somewhat odd looking factor of u+v in this involution is a result of choices made
in the definition of transmission permutations which were motivated by a desire to keep statement [27, Theorem
3.11] as clean as possible.
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4.1 Torsion order and general transmission

Throughout this section, we will always take k to be the torsion order of (G, u, v) when studying k-general transmis-
sion. This brief subsection explains why.

Lemma 4.1. If (G, u, v) is a twice-marked graph with k-general transmission, then k is the torsion order of (G, u, v).

Proof. Let m be the torsion order of (G, u, v), and let D = 0 be the zero divisor. Since r(D) = 0, Lemma 2.12 implies
that there exists a unique ` ≥ 0 such that τu,vD (`) ≤ 0. This in turn implies that r(D + τu,vD (`)u− `v) = 0. Effective
divisors have nonnegative degree, so in fact ` = 0 and τu,vD (0) = 0. Applying the other part of Lemma 2.12 and
Riemann–Roch, r(KG) = g − 1 implies that there exists a set U of g distinct integers u < 0 such that τu,vD (u) > 0.
Each such u gives a distinct k-inversion [(u, 0)] (the square brackets indicate the k-equivalence class) of τu,vD . Since
invk(τu,vD ) ≤ g, these are all of the k-inversions of τu,vD . Hence every inversion (u, v) of τu,vD satisfies v ≡ 0 mod k.

The fact that mu ∼ mv implies that τu,vD (n+m) = τu,vD (n) for all n ∈ Z. Therefore for any u ∈ U , (u+m,m) is
also an inversion of τu,vD . Therefore m ≡ 0 mod k, i.e. k | m.

Conversely, k-general transmission implies that τu,vD ∈ Σ̃k, so τu,vD (0) = 0 implies τu,vD (k) = k, and hence
r(ku− kv) ≥ 0. The only degree-0 effective divisor is 0, so k(u− v) ∼ 0 and therefore m | k. So in fact m = k.

The converse of Lemma 4.1 is quite false, but a partial converse does hold for k = 2 only.

Lemma 4.2. If (G, u, v) has torsion order 2 and every divisor is submodular then G has 2-general transmission.

Proof. Given any D ∈ Pic(G), the transmission permutation τ := τu,vD is determined by any two consecutive values.
If there are no inversions then we are done, otherwise there exists some b such that τ(b) > τ(b+ 1). The number of
inversions is then maximized when τ(b)− τ(b+ 1) is maximized. By Equation (7), this difference is bounded above

by 2g − 1, so let σ denote the element of Σ̃2 defined by σ(0) = 2g, σ(1) = 1. Thus we have the following

invk(τ) ≤ invk(σ) = # {b ∈ 2Z : 1− 2g < b < 1} = g.

4.2 Computing Transmission Permutations on Banana Graphs

In this section we make explicit the relationship between “intersting” twists of a divisor and factors of the corre-
sponding transmission permutation. To that end we give an explicit formula for transmission permutations of theta
graphs in the most generic case.

Definition 4.3. A twice-marked graph (G, u, v) is rigidly marked if every divisor D ∈ Pic (G) is submodular and
r(u+ v) = 0.

A rigidly marked graph satisfies u 6∼ v, and in the context of banana graph u 6∼ v̄ and v 6∼ ū. In the genus 2 case
the second condition is equivalent to u+ v 6∼ KG. This definition is useful for excluding some annoying corner cases
where points of interest on our twice-marked graphs happen to coincide.

4.2.1 Theta Graphs

Proposition 4.4. Let (G, u, v) be a rigidly marked theta graph. Let D be any degree 2 divisor on G. For t ∈ Z,
Define D′t to be D + t(u− v). Then

τu,vD (t) =



t− 2 D′t ∼ 2u

t− 1 D′t ∼ u+ w for some w 6∼ u, v
t+ 1 D′t ∼ v + w for some w 6∼ ū, v̄
t+ 2 D′t ∼ v + ū

t else.

Proof. Note the that rigidly marked ensures that τu,vD exists and that the five cases above to not coincide with one
another. We can examine each of these cases with Corollary 2.21.

If D′t ∼ 2u then

∆(D + (t− 2)u− tv) = ∆(0) = 0− (−1)− (−1) + (−1) = 1.
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If D′t ∼ u+ w for some w other then u, v then

∆(D + (t− 1)u− tv) = ∆(w) = 0− (−1)− (−1) +−1 = 1.

If D′t ∼ v + w for some w other than ū, v̄ then

∆(D + (t+ 1)u− tv) = ∆(u+ v + w) = 1− 0− 0 + 0 = 1.

If D′t ∼ v + ū then

∆(D + (t+ 2)u− tv) = ∆(KG + u+ v) = 2− 1− 1 + 1 = 1.

Lastly, if none of the other four conditions attach, then we know that r(D′t) = 0 and r(D′t−u) = r(D′t− v) = −1
so we get that

∆(D + tu− tv) = 0− (−1)− (−1) + (−1) = 1.

Remark 11. This result can be easily generalized to any genus 2 graph by replacing ū, v̄ with the more generic
KG − u,KG − v respectively.

The upshot of Proposition 4.4 is that in the rigidly marked case, we can always split transmission permutations
into commuting factors of the form σt, σtσt+1 or σt+1σt. In particular, inversions can be counted by examining twists
of a fixed degree, which we exploit in the next section.

4.3 Non-Recurrence

The purpose of this section is to prove the following criterion for k-general transmission in genus 2. The idea behind
this criterion is: in genus 2, the only possible special divisors are those of degrees 0, 1, and 2. Degrees 0 and 2 are
predictable, so the complexity occurs in degree 1. Therefore, in studying invk(τu,vD ) for a divisor D, one is primarily
interested in how many degree 1 twists of D are special, i.e. linearly equivalent to an effective divisor. These twists
form an arithmetic progression of common difference [u − v], and in “typical” circumstances one does not expect
more than two special divisors in such a progression.

Definition 4.5. Let G be a graph, and [D] ∈ Pic0(G) be a degree-0 divisor class, with order k. Call [D] non-recurrent
if for every v ∈ V (G), there is at most one integer n ∈ {1, · · · , k − 1} such that |nD + v| 6= ∅.

The following equivalent characterization of non-recurrence in genus 2 is a direct consequence of Riemann–Roch,
and is the reason for our choice of the word “recurrent.”

Lemma 4.6. If G has genus 2 and [D] ∈ Pic0(G), then [D] is non-recurrent if and only all the sets

{Supp(KG − nD) : n ∈ Z, nD 6∼ 0}

are pairwise disjoint.

Theorem 4.7. Suppose that (G, u, v) is rigidly marked graph of genus 2 and torsion order k. Then (G, u, v) has
k-general transmission if and only if [u− v] ∈ Pic0(G) is non-recurrent.

Definition 4.8. Let D be a divisor on a twice-marked graph (G, u, v). Denote by T dD the set of divisors classes

T dD = {[D + au− bv] : a, b ∈ Z, degD + a− b = d} ⊆ Picd(G).

We call this the set of degree d twists of D. Note that #T dD = k, where k is the torsion order of (G, u, v).

Lemma 4.9. Suppose that D is a submodular divisor on a twice-marked graph (G, u, v) of genus 2. Then

invk(τu,vD ) = #{[D′] ∈ T 1
D : |D′| 6= ∅}+ δ(0 ∈ T 0

D and u+ v ∼ KG).
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Before proving lemma, we briefly explain the underlying idea. There is a function

{[D′] ∈ T 1
D : |D′| 6= ∅} → Invk(τu,vD ),

which we will describe shortly. Although this function need not be a bijection, both injectivity and surjectivity fail
in ways that are not hard to control.

To describe this function, observe the following identity: for any twist D′ = D+au− bv, Lemma 2.12 shows that

(r(D′) + 1) (r(KG −D′) + 1) = #{(m,n) ∈ Z2 : m < b ≤ n and τu,vD (m) > a ≥ τu,vD (n)}.

Assuming G has genus 2 and degD′ = 1, Riemann–Roch implies that r(D′)+1 = r(KG−D′)+1, and both numbers
are either 0 or 1, depending on whether or not |D′| 6= ∅. Therefore, each degree-1 twist D′ = D + au− bv such that
|D′| 6= ∅ determines a unique inversion (m,n) such that m < b ≤ n and τu,vD (m) > a ≥ τu,vD (n). Furthermore, two
twists are linearly equivalent if and only if the two choices of (a, b) ∈ Z2 differ by a multiple of (k, k), so the divisor
class [D′] determines a unique k-equivalence class in Invk(τu,vD ). This describes the desired function.

The proof of Lemma 4.9 therefore follows this strategy: the number invk(τu,vD ) is expressed as an inclusion-
exclusion calculation, which corrects for both the possible non-injectivity and non-surjectivity of the function de-
scribed above. Almost all terms in this calculation will cancel, to leave Lemma 4.9.

We first state and prove a more general formula, valid in every genus, which is conveniently stated using the
following shorthand. This shorthand will be used to count the sums of sizes of certain sets of inversions that will
arise in our inclusion-exclusion argument.

Definition 4.10. Let D,E be two divisors on a twice-marked graph (G, u, v) of any genus. For any two integers
d, e such that d+ e = degE, define

Sd,eD (E) =
∑

[D′]∈TdD

(r(D′) + 1) (r(E −D′) + 1) .

Denote also SD(E) =
∑
d∈Z S

d,degE−d(E).

The number e is redundant in this notation since it is determined uniquely by d and degE; we include it as a
reminder of the degrees of the divisors considered in the second factor, and to more clearly highlight the following
symmetry:

Sd,eD (E) = Se,dE−D(E).

One special case is important in our analysis: when d = 0, we have the formula

S0,e
D (E) = δ(0 ∈ T 0

D) (r(E) + 1) , (4)

since D′ = 0 is the only possible choice for which the factor (r(D′) + 1) does not vanish. By like reasoning, the case
e = 0 has the formula

Sd,0D (E) = δ(E ∈ T dD) (r(E) + 1) . (5)

The discussion above shows that, when G has genus 2, the “main term” from Lemma 4.9 is one of these numbers:

#{[D′] ∈ T 1
D : |D′| 6= ∅} = S1,1

D (KG).

Furthermore, the reader may verify that the “correction term” in Lemma 4.9 is also one of these numbers:

δ(0 ∈ T 0
D and u+ v ∼ KG) = S0,0

D (KG − u− v).

So Lemma 4.9 is equivalent to saying that, in genus 2, we have invk(τu,vD ) = S1,1
D (KG) + S0,0

D (KG − u − v). We
prove this by first proving the following more general fact (valid in all genera), and then showing that many terms
vanish or cancel in genus 2. Although the proof of this lemma is written in an algebraic way for convenience, the
reader should observe that the formula resembles an inclusion-exclusions calculation, and indeed the proof may be
reformulated explicitly using the inclusion-exclusion principle with a bit more work.

Lemma 4.11. Let D,E be two divisors on a twice-marked graph (G, u, v) of any genus with torsion order k, and let
D be a submodular divisor. Then

invk(τu,vD ) = SD(KG)− SD(KG − u)− SD(KG − v) + SD(KG − u− v).
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Proof. First, observe that, since every equivalence class of inversion has a unique representative (a, b) such that
0 ≤ b < k, we may write

invk(τu,vD ) =

k−1∑
b=0

#{n < b : τu,vD (n) > τu,vD (b)}.

This in turn may be rewritten as follows.

invk(τu,vD ) =

k−1∑
b=0

∑
a∈Z

δ(τu,vD (b) = a) ·#{n < b : τu,vD (n) > a}

=

k−1∑
b=0

∑
a∈Z

∆(D + au− bv) (r(KG − (D + au− bv)) + 1) .

Since [u−v] has order k in Jac (G), the divisor D′ = D+au−bv in this last sum ranges over a system of representatives
for the divisors classes of twists of D (of any degree). Therefore the sum may be rewritten

invk(τu,vD ) =
∑
d∈Z

∑
[D′]∈TdD

∆(D′) (r(KG −D′) + 1) .

We may write ∆(D′) as
∑

E∈{0,u,v,u+v}

(−1)degE (r(D′ − E) + 1), and hence rewrite the equation above as follows.

invk(τu,vD ) =
∑
d∈Z

∑
[D′]∈TdD

∑
E∈{0,u,v,u+v}

(−1)degE (r(D′ − E) + 1) (r(KG −D′) + 1)

=
∑

E∈{0,u,v,u+v}

(−1)degE
∑
d∈Z

∑
[D′]∈TdD

(r(D′ − E) + 1) (r(KG −D′) + 1) .

In this sum, for a fixed choice of E, the fact that E is a linear combination of u and v means that the divisor D′−E
ranges over all twists of D of any degree. So we may write more simply∑

d∈Z

∑
[D′]∈TdD

(r(D′ − E) + 1) (r(KG −D′) + 1) = SD(KG − E).

The lemma follows.

Proof of Lemma 4.9. Observe that Sd,eD (E) = 0 whenever d < 0 or e < 0. So if G has genus 2, and thus degKG = 2,
the four terms in Lemma 4.11 each expand to a relatively small number of terms, as follows.

SD(KG) = S2,0
D (KG) + S1,1

D (KG) + S0,2
D (KG);

SD(KG − u) = S1,0
D (KG − u) + S0,1

D (KG − u);

SD(KG − v) = S1,0
D (KG − v) + S0,1

D (KG − v);

SD(KG − u− v) = S0,0
D (KG − u− v).

As discussed in the paragraph above Lemma 4.11, we wish to show that, when the formula in Lemma 4.11 is expanded
using these equations, all terms cancel except S1,1

D (KG) and S0,0
D (KG − u− v).

Equations (4) and (5), Riemann–Roch, and the fact that r(u) = r(v) = 0, give the following formulas.

S2,0
D (KG) = δ(KG ∈ T 2

D) (r(KG) + 1)

= 2δ(KG ∈ T 2
D);

S1,0
D (KG − u) = δ(KG − u ∈ T 1

D) (r(KG − u) + 1)

= δ(KG ∈ T 2
D);

S1,0
D (KG − v) = δ(KG − v ∈ T 1

d ) (r(KG − v) + 1)

= δ(KG ∈ T 2
D).
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From this we deduce that
S2,0
D (KG)− S1,0

D (KG − u)− S1,0
D (KG − v) = 0.

The identity Sd,eD (E) = Se,dE−D(E) shows similarly that

S0,2
D (KG)− S0,1

D (KG − u)− S0,1
D (KG − v) = 0.

Putting this together with Lemma 4.11 shows that

invk(τu,vD ) = SD(KG)− SD(KG − u)− SD(KG − v) + SD(KG − u− v) = S1,1
D (KG) + S0,0

D (KG − u− v).

As discussed above, these terms are equal to #{[D′] ∈ T 1
D : |D′| 6= ∅} and δ(0 ∈ T 0

D and u+v ∼ KG), respectively.

Proof of Theorem 4.7. First suppose that [u−v] ∈ Pic0(G) is non-recurrent. Take any [D] ∈ Pic (G) and let τ = τu,vD

(which exists since all divisors are submodular by assumption). Let I = {[D′] ∈ T 1
D : |D′| 6= ∅}. By Lemma 4.9,

invk(τ) = #I, so if I is empty then we are done. Otherwise take [D′] ∈ I. Note that this is a degree 1 rank 0 divisor
class, so by Lemma 2.3 there is a unique w ∈ V (G) such that D′ ∼ w. Now note that if [D+au−bv], [D+a′u−b′v] ∈ I
then since they have the same degree a− a′ = b− b′ and thus D+ a′u− b′v = (D+ au− bv) + (a′ − a)(u− v). Thus
every divisor class in I has a representative of the form [w+n(u−v)]. If we enforce that 0 ≤ n < k then these are all
distinct. Since [u− v] is non-recurrent, we conclude that there is at most one value of n such that [w+n(u− v)] ∈ I
and thus invk(τ) ≤ 2.

Now suppose that (G, u, v) has k-general transmission. We claim this implies non-recurrence of [u− v]. Take any
vertex w ∈ V (G). Note that any degree 1 twist of w must be of the form w + n(u − v). Every such class of twists
has a representative satisfying 0 ≤ n < k. Thus we have that

#
{

[w + au− bv] ∈ T 1
w : |w + au− bv| 6= ∅

}
= {[w + n(u− v)] : 0 ≤ n < k, |w + au− bv| 6= ∅}
= 1 + # {n ∈ {1, . . . , k − 1} : |w + n(u− v)| 6= ∅} .

Applying Lemma 4.9 again to the permutation τu,vw the above equation then implies that

# {n ∈ {1, . . . , k − 1} : |w + n(u− v)| 6= ∅} ≤ 1.

Thus [u− v] is non-recurrent.

Theorem 4.12. If (G, u, v) is a twice-marked bridgeless graph of genus 2 and torion order k, then G has k-general
transmission if and only if:

1) (G, u, v) is the vertex gluing of a two twice-marked cycles, each of which has torsion order k;

2) G is a chain of two loops with one loop of length 2 and the marked points on the two vertices on that loop;

3) G is a theta graph with [u− v] non-recurrent and either

a) {u, v} = {vα,0, vα,nα−1}
b) {u, v} = {vα,1, vα,nα}
c) {u, v} = {vα,i, vβ,j} with α 6= β and 0 < i < nα, 0 < j < nβ

Proof. First suppose that G is genus 2 and has k-general transmission. Then G is either a chain of two loops or a
theta graph. If G is a chain of loops then [27, Lemma 2.5, Theorem 3.11] implies that every divisor is submodular.
If the marked points are on distinct loops, the (G, u, v) is the vertex gluing of (G1, u1, v1) and (G2, u2, v2) where
G1, G2 are cycles. Let ki denote the torsion order of (Gi, ui, vi). If k1 6= k2 then without loss of generality k1 < k2.
Note that this implies that

k1(u− v) + v ∼ k1u2 + (1− k1)v2

Considering this as a divisor on G2 it clearly must be effective since it is degree 1 on a genus 1 graph. Thus we
have that (u− v) + v, k1(u− v) + v are rank 0, so [u− v] is recurrent. However by Theorem 4.7 this contradicts the
assumption that G has k-general transmission so we can assume k1 = k2 giving case 1).

If the marked points or on the same loop then by Proposition 3.6 k-general transmission implies 2) above.
On the other hand if G is a theta graph then by Corollary 3.5 we have the G must be rigidly marked unless {u, v} =

{v0,0, v0,n0
}. This is incompatible with k-general transmission, the proof of which we defer to Proposition 4.19. The
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remaining possibilities are the cases 3) a), b) and c) above which are all rigidly marked and thus by Theorem 4.7
[u− v] is non-recurrent.

For the other direction, 1) implies k-general transmission by [27, Theorem A]. 2) implies k-general transmission
by Lemma 4.2. Lastly 3) implies k-general transmission since in each case the graph is rigidly marked and thus
Theorem 4.7 gives the result.

Definition 4.13. Let (θn0,n1,n2 , vα,i, vβ,j) be a twice-marked theta graph. We say that such a graph is evenly marked
if i
nα

= j
nβ
, α 6= β and 0 < i < nα.

Lemma 4.14. If (θn0,n1,n2
, vα,i, vβ,j) is evenly marked, then the class [vα,i − vβ,j ] is non-recurrent, with order

nα
gcd(nα,i)

=
nβ

gcd(nβ ,j)
in Jac (θn0,n1,n2).

Proof. Without loss of generality, let (α, β) = (0, 1). For ease of notation let a := n0, b := n1, c := n2 and d :=
gcd(i, a), d′ = gcd(j, b). In thise notation, the evenly marked assumption means that aj = bi. First we claim that
the torsion order is a

d . This can be seen using the isomorphism in Proposition 2.14:

a

d
[i,−j] =

[
ai

d
,
−aj
d

]
=

[
0,
bi− aj
d

]
= 0.

Thus the torsion order divides a
d . Further if n[i,−j] = 0 then there exists some x, y ∈ Z such that n(i,−j) =

x(a,−b) + y(a+ c, c). The fact that a
b = i

j means that we can assume y = 0. Thus we have that a|ni so a
d |n and we

can conclude that a
d is the torsion order, call it k. By a symmetric argument, k = b

d′ as well.
We now obtain a formula for each support complex Supp(KG − n(v0,i − v1,j)) for 0 < n < k. We follow the

convention: for any ` ∈ Z,m ∈ Z, ` mod m denotes the nonnegative residue of ` modulo m, i.e. ` − b `mcm. Using

the identification of Proposition 2.14, and the equation bnia c = bnjb c, we see that

[ni,−nj] =

[
ni−

⌊
ni

a

⌋
a,−nj +

⌊
ni

a

⌋
b

]
= [ni mod a,−(nj mod b)] .

Using the isomorphism in Proposition 2.14 again, we deduce

n(v0,i − v1,j) ∼ v0,ni mod a − v1,nj mod b, (6)

and therefore

KG − n(v0,i − v1,j) ∼ v0,ni mod a + v1,nj mod b.

Note the overline on the first vertex. Since we are assuming 0 < n < k, we have ni 6≡ 0 mod a and nj 6≡ 0
mod b. Therefore neither of the two vertices mentioned above are multivalent, so they do not lie on the same strand,
and Corollary 3.7 implies that

Supp (KG − n(v0,i − v1,j)) = {v0,ni mod a, v1,nj mod b} .

Since k is the additive order of i+aZ in Z/aZ, and also of j+bZ in Z/bZ, it follows that the vertices {v0,ni mod a :
0 < n < k} are k − 1 distinct vertices on strand 0, and {v1,nj : 0 < n < k} are k − 1 distinct vertices on strand 1.
So indeed these supports are pairwise disjoint, and [v0,i − v1,j ] is non-recurrent by Lemma 4.6.

Remark 12. The simplicity of Equation (6) is the essential reason why evenly marked theta graphs present such at
tractable case for analyzing recurrence: multiples of the difference of the marked points do not involve the third
strand at all.

Note that evenly marked theta graphs are rigidly marked by Corollary 3.5 so these two lemmas together establish
the following Corollary, which was stated in the introduction as the second part of Theorem 1.10.

Corollary 4.15. An evenly marked theta graph (θn0,n1,n2 , vα,i, vβ,j) has k-general transmission, where k = nα
gcd(nα,i)

=
nβ

gcd(nβ ,j)
.

21



4.4 Banana Graphs Are Increasingly Special As Genus Increases

For almost all banana graphs of genus ≥ 3 we can rule out general transmission using techniques we develop in
Section 6, provided sufficiently high torsion order. Indeed, we saw in Theorem 3.8 that k-general transmission is
ruled out for most banana graphs because we can construct non-submodular divisors for many choices of markings.
In this section we show that as the genus increases, banana graphs become less and less general in the sense that
the maximal number of inversions of a permutation on a given banana graph grows at least quadratically with the
genus. Along the way we prove lower bounds on torsion orders of these graphs which we will use in Section 6.

Throughout this section G = Bn0,...,ng is a banana graph of genus g ≥ 2. Our general strategy will be to compute
enough of the transmission permutations to get a lower bound on the number of k-inversions. In particular, if we
are clever with our choice of divisor D, part of the permutation τu,vD can be determined with only the local data
of the lengths of the strands supporting the marked points. Without loss of generality we assume these are n0, n1.
Let D = gv0,n0 , τ = τu,vD , k denote the torsion order and M the maximum number of k-inversions a transmission
permutation of any divisor on (G, u, v). With this notation, the main results are as follows.

Theorem 4.16. If (G, u, v) is a twice-marked banana graph with genus ≥ 3 where every divisor is submodular and
the marked strands are sufficiently long, then M is at least quadratic in g.

Thus while banana graphs may be general in genus 2, the higher the genus the more “special” these graphs are.

Proposition 4.17. If (G, u, v) is a twice-marked banana graph of genus ≥ 3 and torsion order k where every divisor
is submodular then either

1) Up to reordering the strands, n0 = n1 = 2 and (G, u, v) = (G, v0,1, v1,1) and thus k = 2, or

2) k ≥ g.

As shown in Theorem 3.8, we need only consider a few cases in which all divisors are submodular. These cases
are addressed in the following several subsections.

4.4.1 (g + 1)−valent markings

Lemma 4.18. With (G, u, v) = (B, v0,0, v0,n0), D = gv0,n0 , and τ = τu,vD , for all 0 ≤ b ≤ g we have that

τ(b) = g − b.

As a consequence this yields that the k ≥ g.

Proof. This follows fairly directly from Corollary 2.22 part 1) as follows

∆(D + bu− (g − b)v) = ∆(bu+ bv) = 1.

The torsion order consequence follows from the fact that τ ∈ Σ̃k.

Proposition 4.19. With (G, u, v) as above, then M ≥
(
g+1
2

)
.

Proof. By Lemma 4.18, the permutation associated to the divisor D has at least
(
g+1
2

)
k−inversions given by the

pairs {(i, j) : i, j ∈ {0, . . . , g} , i < j}.

Remark 13. As a consequence this entirely completes the picture for describing k-general transmission in genus 2
which we proved except for the above case in Theorem 4.12. By the above proposition M ≥ 3, ruling out k-general
transmission in such cases as well.

4.4.2 v0,0, v0,n0−1 markings

Note that in order for such markings to make sense we require n0 > 1. To make some results easier to state we use

f(g) to denote
⌊

g
n0−1

⌋
in this section.

Lemma 4.20. Let (G, u, v) = (G, v0,0, v0,n0−1), D = gv0,n0
and τ = τu,vD . If 0 ≤ b ≤ n0

n0−1g then

τ(b) =


b
n0

b ≡ 0 mod n0

g + b+1
n0

b ≡ −1 mod n0

g + 2
⌊
b
n0

⌋
− b+ 1 b 6≡ 0,−1 mod n0

.

As a consequence, we get that k > n0

n0−1g.
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Figure 6: The permutation τu,vgv0,n0
on the graph (B5,4,4,3,3,3,3,3,3,3, v0,0, v0,n0−1), a graph with genus 9 and torsion

order 91. Values are colored by residues modulo n0 as indicated in the legend. The values predicted by Lemma 4.20
are those where b ≤ 12 which are well sorted by color. Notice also that although the torsion order is 91, the
permutation appears “quasiperiodic” at greater frequency, in a manner we do not attempt to define precisely.

This lemma says that the for sufficiently small values of b, τ(b) is very well described by the residues of b modulo
n0. In Figure 6 the lemma describes the behavior of the a permutation for 0 ≤ b ≤ 12.

Proof. This essentially all follows from part 2) of Corollary 2.22. If b = mn0 then

∆(D +mu−mn0v) = ∆((g − (n0 − 1)m)v0,n0
) = 1.

Now suppose b = mn0 − 1. Then we have

∆(D + (g +m)u− (mn0 − 1)v) = ∆(gv0,0 + v + (g −m(n0)− 1)v0,n0) = 1.

Lastly, suppose that b = mn0+n with 0 < n < n0−1 and m =
⌊
b
n0

⌋
. Then the claim is that τ(b) = g+2m−b+1,

and we can compute

∆(D + (g + 2m− b+ 1)u− bv) = ∆((g +m− b+ n)v0,n0 + (g +m− b+ 1)u− (b−mn0)v)

= ∆((g − (b−m))v0,0 + (g − (b−m))v0,0 + v0,n) = 1.

Proposition 4.21. With the same notation as above, M ≥
(
(n0−2)(f(g))

2

)
.

Proof. By Lemma 4.20, every pair of integers in the set
{
b : 0 < b < n0

n0−1g, b 6≡ 0,−1 mod n0

}
gives a distinct

k-inversion. The number of elements in this set is lower bounded by (n0 − 2)f(g) thus giving the result.

We can improve this bound with a more careful analysis of the implications of Lemma 4.20.

Proposition 4.22. With the same notation as above, and letting h(g) = f(g)(n0−2)+min {n0 − 2, f(n0g)− n0f(g)},

M ≥
(
f(g) + 1

2

)
+ f(g)h(g) +

(
h(g)

2

)
.

The idea for this proof is to split the inversions predicted by Lemma 4.20 into four different types depending on
the residues of each coordinate of each inversion. In the notation of Figure 6 these types are

(light blue, yellow), (light blue,dark blue), (dark blue, yellow), (dark blue,dark blue).

23



Proof. First note that if X =
{
b ∈ Z : 0 < b ≤ n0

n0−1g
}

then

A := {b ∈ X : b ≡ 0 mod n0} , #A = f(g);

B :=

{
b ∈ X : b ≡ −1 mod n0, b 6=

⌊
n0g

n0 − 1

⌋}
, #B = f(g);

C := {b ∈ X : b 6≡ 0,−1 mod n0} , #C = f(g)(n0 − 2) + min {n0 − 2, f(n0g)− n0f(g)} = h(g).

We are aiming to lower bound invk(τ) by counting elements of I := Invk(τ) ∩ (X ×X). We can write this latter set
as the disjoint union:

I = [I ∩ (B ×A)] ∪ [I ∩ (B × C)] ∪ [I ∩ (C ×A)] ∪ [I ∩ (C × C)].

It is a straightforward computation using Lemma 4.20 that

I ∩ (B ×A) = {(b, b′) ∈ B ×A : b < b′} ; I ∩ (B × C) = {(b, b′) ∈ B × C : b < b′} ;

I ∩ (C ×A) = {(b, b′) ∈ C ×A : b < b′} ; I ∩ (C × C) = {(b, b′) ∈ C × C : b < b′} .

Another simple counting argument shows:

#(I ∩ (B ×A)) =

(
#A+ 1

2

)
;

#(I ∩ (C ×A)) = (n0 − 2)

(
#A+ 1

2

)
;

#I ∩ (B × C) = #B#C − (n0 − 2)

(
#B + 1

2

)
;

#I ∩ (C × C) =

(
#C

2

)
.

Putting this all together, we get that

#I =

(
#A+ 1

2

)
+ #B#C +

(
#C

2

)
.

Note that this implies that M is always lower bounded by function which is quadratic in g. This is fairly easy to
see when f(g) > 0. If f(g) = 0, i.e. g < n0 − 1, then

h(g) = min {n0 − 2, f(n0g)} ≥ min

{
g − 1,

n0
n0 − 1

g − 1

}
= g − 1.

Example 4.23. Examining the permutation in Figure 6, the proposition says that

invk(τu,vD ) ≥ #I =

(
3

2

)
+ 2 ∗ 7 +

(
7

2

)
= 38.

This lower bound certainly exceeds the genus of 9, but still misses most of the 217 total k-inversions of this permu-
tation.

4.4.3 v0,1, v1,n1−1 markings

The last class of markings we look at is least well behaved of the three since neither of our two marked points are
the high valence vertices. In this context we are assuming that n0, n1 > 1.

We first give a lower bound on the torsion order for these markings.

Lemma 4.24. The torsion order k of (G, v0,1, v1,n1−1) is at least g unless n0 = n1 = 2 in which case k = 2.

Proof. The case where n0 = n1 = 2 is straightforward so suppose this does not hold. Take a ∈ Z such that 1 < a < g.
We aim to show that a(v0,1−v1,n1−1) is not equivalent to the zero divisor. We use throughout that D ∼ 0 if and only
if −D ∼ 0. Let a = q0n0+r0 = q1n1+r1 where qi, ri ∈ N0 and 0 ≤ ri < ni. Let m = q0(n0−1)−q1, n = q1(n1−1)−q0
Then we have that

a(v0,1 − v1,n1−1) ∼ mv0,0 − nv0,n0
+ r0v0,1 − r1v1,n1−1.
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Case I: If n > 0 then we have that a(u− v) has rank no greater than that of

mv0,0 − nv0,n0
+ r0v0,1 ∼ (m+ r0 − 1)v0,0 − nv0,n0

+ v0,r0

Since m + r0 − 1 ≤ a − 1 < g − 1 this is v0,n0
-reduced and not effective, thus our original divisor was not effective.

Case II: On the other hand if n < 0 then we can see that −a(u− v) has rank no greater than that of

−mv0,0 + (n+ r − 1)v0,n0
+ v1,n1−r

Since n+m ≥ 0 and n < 0 we have that −m < 0 and by a symmetric argument as above n+ r − 1 < g − 1 so this
divisor is ineffective and v0,0 reduced.
Case III: This leaves the remaining case of n = 0. Note that this implies that m ≥ 0. Thus either both q0 and q1
are zero or neither is. If n0 = n1 then q0 = q1 so we get that q0(n0 − 2) = 0. Since we are assuming that n0 6= 2 this
implies that q0 = 0, and thus r0 = r1 ≥ 1. So we have that a(u− v) has rank no greater than that of

r0v0,1 − v0,n1−1 ∼ (r0 − 1)v0,0 + v0,r0 − v0,n1−1.

Because r0−1 < a < g this is v0,n1−1-reduced and ineffective. Lastly we consider if n0 6= n1. Note that if r0 = r1 = 0
then this forces q0, q1 > 0 and m = n as well, so we have q1(n1− 2) = q0(n0− 2) which is contradiction since q0 6= q1.
Thus it must be the case that one of r0, r1 is at least 1. If r0 > 1 then

−a(v0,1 − v1,n1−1) ∼ −mv0,0 − v0,1 + r1v1,n1−1 ∼ −mv0,0 − v0,1 + (r1 − 1)v1,n1 + v1,n1−r.

which is v0,1 reduced and ineffective. If r1 > 1, a symmetric argument may be made about a(v0,1 − v1,n1−1).

Lemma 4.25. For max {2, g + 2− n0} ≤ b ≤ min {g − 1, n1 − 2} and D = gv0,n0 we have that τu,vD (b) = g − b+ 2.

Proof. First note that

gv0,n0 + (g − b+ 2)v0,1 − bv1,n1−1 ∼ (g − b)v0,0 + (g − b)v0,n0 + v0,g−b+1 + v1,b.

Then the key observations are that because b ≤ g − 1, we have that g − b ≥ 1 and because b ≥ 2, g − b ≤ g − 2.
Further because b ≥ g+ 2−n0 we have that g− b+ 1 ≤ g− (g+ 2−n0) + 1 = n0− 1. This establishes the conditions
for part 3) of Corollary 2.22 thus proving the lemma.

Corollary 4.26. If min {n0, n1} ≥ g + 1, then M ≥
(
g−2
2

)
.

Proof. Consider the set An0,n0
= {b ∈ Z : max {2, g + 2− n0} ≤ b ≤ min {g − 1, n1 − 2}}. Let m = min {n0, n1}.

Then we have the following

#An0,n1
≥ #Am,m =


0 m < 3+g

2

2m− (g + 3) 3+g
2 ≤ m ≤ g

g − 2 m ≥ g + 1

.

Thus by Lemma 4.25 we see that

invk(τu,vD ) ≥
(

#An0,n1

2

)
≥
(
g − 2

2

)
.

Lemma 4.27. If D = gv0,n0
, τ = τu,vD then

1) If 1 ≤ b ≤ min
{

n1

n1−1g, n1(n0 − 1)
}

and b ≡ 0 mod n1 then τ(b) = b
n1

+ 1.

2) If 1 ≤ b ≤ min
{

n1

n1−1g, n1(n0 − 1− g)− 1
}

, and b ≡ −1 mod n1 then τ(b) = g + b+1
n1

.

3) If 2 ≤ b ≤ n1

n1−1g, 2
⌊
b
n1

⌋
− b ≤ n0 − 3− g and b ≡ −n mod n1 with n 6= 0, 1 then τ(b) = g + 2 b+nn1

− b+ 2.
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Proof. We proceed similarly to the proof of Lemma 4.20. In all cases, the constraints on b above are chosen to keep
the various indices “inbounds” and to satisfy criteria of Corollary 2.22. If b = mn1 then

gv0,n0 + (m+ 1)v0,1 −mn1v1,n1−1 ∼ v0,m+1 + (g −m(n1 − 1))v0,n0 .

This satisfies the conditions of Corollary 2.22 part 3) so we are done. If b = mn1 − 1 then

gv0,n0
+ (m+ g)v0,1 − (mn1 − 1)v1,n1−1 ∼ (g − 1)v0,0 + (g −m(n1 − 1))v0,n0

+ v0,m+g + v1,n1−1.

Again this reduces us to checking the conditions of Corollary 2.22. Lastly if b = mn1 + n where 0 < n < n1− 1 then
we have

gv0,n0
+ (g + 2m− b+ 2)v0,1 − (mn1 + n)v1,n1−1 ∼ (g +m− b+ 1)(v0,0 + v0,n0

) + v0,g+2m−b+2 + v1,n1−n.

Applying Corollary 2.22 a final time completes the argument.

Corollary 4.28. When n0 is sufficiently large relative to the genus then we get a lower bound on M which is
quadratic in g.

Proof. For sufficiently large n0 the bounds appearing in on b Lemma 4.27 match those of Lemma 4.20. Although the
permutation of gv0,n0

on (G, v0,0, v1,n1
) does not agree with the permutation of gv0,n0

of (G, v0,1, v1,n−1), they have
the same number of inversions in the range [2, n1

n1−1g], thus Proposition 4.22 gives the lower bound for M .

Remark 14. A symmetric result to Corollary 4.28 could be developed by studying the divisor gv0,0. The point is
that this gives a lower bound on M when max {n0, n1} is sufficiently large. Note also that this lower bound on
max {n0, n1} generally exceeds the lower bound on min {n0, n1} investigated in Corollary 4.26.

With this result we complete the proof of Theorem 4.16.

Proof of Proposition 4.17. By Theorem 3.8 the only possible banana graphs of genus ≥ 3 for which every divisor is
sumbodular are the three special cases investigated in this section. The result is then a simple consequence of the
torsion order bounds given by Lemma 4.18, Lemma 4.20, and Lemma 4.24, each of which are at least g except in the
case of n0 = n1 = 2, (u, v) = (v0,1, v1,1).

5 Symmetries and Quasi-Symmetries of Transmission Permutations

This section is not needed for our main results, but is included to shine a light on some intriguing patterns in the
examples discussed above, namely some symmetries of the permutations obtained. Perhaps more tantalizing are
some “quasi-symmetries” in the permutations obtained, for which we have no formal definition, but which we wish
to draw the reader’s eye to.

In practice, one finds that transmission permutations often have more symmetry than expected for elements of
Σ̃k. In this section we give a brief accounting of where these additional sources of symmetry arise. In some cases,
these symmetries can be brought to bear to yield information about general transmission on these graphs, although
we are somewhat constrained by the fact that the symmetries in question do not necessarily impact the transmission
permutation of every divisor on a given graph.

The most obvious constraint on transmission permutations comes from the fact that the Riemann–Roch formula
bounds the values of a transmission permutation. Namely

b− degD ≤ τu,vD (b) ≤ 2g + b− degD. (7)

For certain graphs we get an additional source of symmetry.

Definition 5.1. For a twice-marked graph (G, u, v) a marked point automorphism φ is a pair φV : V (G) → V (G)
and φE : E(G)→ E(G) such that φV , φE are bijections and if e ∈ E(G) connects vertices w1, w2 then φE(e) connects
φ(w1) and φ(w2). We further require that φV restricts to a bijection of the marked points.

Given any such automorphism φ we get an induced automorphism on the Pic (G) given by (φ(D))(w) = D(φ(w)).
Thus we get a bijection between the set of transmission permutations of (G, u, v) and those of (φ(G), φ(u), φ(v))
given by

τu,vD 7→ τ
φ(u),φ(v)
φ(D) .

A related phenomenon is the involution ι(D) = KG−D+u+v. This permutation of the elements of Pic (G) does
not arise from a marked point automorphism, but nonetheless induces constraints on the transmission permutations
on (G, u, v). We summarize the picture in the following lemma.
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Lemma 5.2. If φ is a marked point automorphism of (G, u, v) then the following are equivalent:

1) τu,vD (b) = a;

2) τv,uD (−a) = −b;

3) τv,uι(D)(a) = b;

4) τ
φ(u),φ(v)
φ(D) (b) = a.

Note the change in the order of the marked points in cases 2), 3), and 4).

Thus relationships between a divisor D and divisor obtained by applying combinations of marked point automor-
phisms and the involution ι can force a transmission permutation to have more than expected symmetry.

Lemma 5.3. Let (G, u, v) be a twice-marked graph and φ a marked point automorphism which transposes u and v.

1) If φ(D) +D ∼ KG + u+ v then δ(τu,vD (b) = a) = δ(τu,vD (a) = b), i.e. (τu,vD )
2

= id.

2) If φ(D)−D ∼ n(u− v) for some n ∈ Z then δ(τu,vD (b) = a) = δ(τu,vD (n− a) = n− b).

Proof. For the first statement note that using the equivalence of 1), 3) and 4) of Lemma 5.2

δ(τu,vD (b) = a) = δ(τv,uφ(D)(b) = a)

= δ(τu,vKG−φ(D)+u+v(a) = b)

= δ(τu,vD (a) = b).

For the second we can use the equivalence of 1), 2) and 4) Lemma 5.2 to get

δ(τu,vD (b) = a) = δ(τv,uφ(D)(b) = a)

= δ(τu,vD+n(u−v)(−a) = −b)

= δ(τu,vD (n− a) = n− b).

Example 5.4. For the (g + 1)−valently marked banana graphs discussed in Section 4.4.1 there is a marked point
automorphism φ given by vα,i 7→ vα,nα−i which transposes the marked points. For the divisor D = gv0,n0

we have
that φ(D) = gv0,0 so it satisfies condition 2) of Lemma 5.3.

The other situation occurs in the markings discussed in Section 4.4.3. If n0 = n1 then we get an automorphism
φ(D) defined by

vα,i 7→


v0,n0−i α = 1

v1,n1−i α = 0

vα,nα−i α > 1

.

Intuitively this is the automorphism which reverses every strand and then transposes the first two. Again here
Lemma 5.3 forces divisors such as (g − 1)v0,0 + u to be self-inverse.

These symmetries can be used to bound the number of inversions of the transmission permutations of some
divisors. Notably, these techniques are also not restricted to banana graphs.

Proposition 5.5. If φ is a marked point automorphism of (G, u, v) and D ∈ Pic (G) such that φ(D)+D ∼ KG+u+v,
then

invk(τu,vD ) ≥
∑
M∈[k]

[
r(D + (M − 1)u−Mv)− r(D + (M − 2)u−Mv)

]
.

The basic idea here is that when our permutations are self-inverse, we can obtain a lower bound on the number of
inversions by counting the number of points of the permutation which fall below the identity permutation (equivalently
we could count those above).
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Proof. If τu,vD (b) < b then the pair (τu,vD (b), b) is an increasing pair such that (τu,vD (τu,vD (b)), τu,vD (b)) = (b, τu,vD (b))
is decreasing, thus an inversion. Since b ∈ [k], these inversion are all distinct as k-inversions, thus giving the lower
bound. Thus

invk(τu,vD ) ≥ {b ∈ [k] : τu,vD (b) > b} .

To count this latter set we used Lemma 2.12. Let Bτ (i) := {b ≥ i : τ(b) ≤ i− 1}. By an inclusion-exclusion argument,

# ∪i∈[k] Bτ (i) =
∑
J⊆[k]

(−1)|J|+1#
⋂
i∈J

Bτ (i)

=
∑
M∈[k]

M∑
m=0

∑
J⊆[k]

max{J}=M
min{J}=m

(−1)|J|+1#
⋂
i∈J

Bτ (i)

=
∑
M∈[k]

M∑
m=0

∑
J⊆[k]

max{J}=M
min{J}=m

(−1)|J|+1# {b ≥M : τ(b) ≤ m− 1}

=
∑
M∈[k]

M∑
m=0

# {b ≥M : τ(b) ≤ m− 1}
∑
J⊆[k]

max{J}=M
min{J}=m

(−1)|J|+1

=
∑
M∈[k]

M∑
m=0

# {b ≥M : τ(b) ≤ m− 1}


1 m = M

−1 m = M − 1

0 m < M − 1

= # {b ≥ 0 : τ(b) ≤ −1}+

k−1∑
M=1

[
# {b ≥M : τ(b) ≤M − 1} −# {b ≥M : τ(b) ≤M − 2}

]
Thus in order to count subdiagonal points we add an error term:

# {b ∈ [k] : τ(b) < b} = # ∪i∈[k] Bτ (i)−# {b ≥ k : τ(b) ≤ k − 2}

=
∑
M∈[k]

Big[# {b ≥M : τ(b) ≤M − 1} −# {b ≥M : τ(b) ≤M − 2}
]

By lemma 2.12 this is equivalent to∑
M∈[k]

[
r(D + (M − 1)u−Mv)− r(D + (M − 2)u−Mv)

]

Remark 15. Another notable feature is a kind of quasi-symmetry in which the permutation seems almost to belong
to Σ̃` for some ` < k, with a little bit of added noise. This pattern is particularly striking in Figure 6 where despite
a torsion order of 91, the permutation almost seems to obey τ(b+ 12) = τ(b) + 12 with some kind of error term. In
some sense this suggest that 12(u − v) is “close” to being equivalent to 0, but we do not yet have a framework for
understanding this phenomenon.

6 Chains of mixed torsion orders

We prove in this section several criteria for Brill–Noether generality of graphs obtained by vertex gluing, or by chains
thereof. We wish to prove criteria that are valid when twice-marked graphs of different torsion orders are chained
together. The main purpose of this section is to prove Theorem 1.11 from the introduction, but the inductive tools
developed here may be more broadly applicable.
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6.1 Brill–Noether generality from k-general transmission

We begin with a result not involving any chains. For sufficiently large k, k-general transmission directly implies
Brill–Noether generality of the underlying graph (forgetting the marked points).

Proposition 6.1. If (G, u, v) is a twice-marked graph of genus g with k-general transmission, and k ≥ 1
2g+ 1, then

G is Brill–Noether general (as an unmarked graph).

Proof. For contradiction, suppose that D is a divisor on G of degree d and rank r such that ρ(g, r, d) > g, i.e.
(r + 1)(g − d+ r) > g. Note that Lemma 2.12 implies the following two equations.

r + 1 = #{v ≥ 0 : τu,vD (v) ≤ 0}
g − d+ r = r(KG −D) + 1 = #{u < 0 : τu,vD (u) > 0}

It follows that the number (r+1)(g−d+r) is equal to the number of inversions (u, v) of τu,vD such that u < 0, τ(u) >
0, v ≥ 0, and τ(v) ≤ 0. Since there are more than g such inversions, and invk(τu,vD ) ≤ g, some two such inversions
(u, v), (u′, v′) are k-equivalent. Without loss of generality, assume u < u′. We will use these values to construct more
than g distinct k-inversions, which will lead to a contradiction.

Let I be the set of integers i such that u < i ≤ v′ and u 6≡ i (mod k). For each i ∈ I, as associate an inversion

f(i) =

{
(u, i) if τu,vD (i) ≤ 0,

(i, v′) if τu,vD (i) > 0.

We claim that for i, j ∈ I, if i 6= j then f(i) and f(j) are not k-equivalent. To see this, observe that (u, i), (u, j)
cannot be k-equivalent, nor can (i, v′), (j, v′), since i 6= j. By symmetry, we need only check that (u, i) cannot be
k-equivalent to (j, v′). This follows from u 6≡ j (mod k), which is part of the definition of the set I.

Therefore invk(τu,vD ) ≥ |I|. Now, the number of integers u < i ≤ v′ is v′ − u. Since v′ > v and v′ ≡ v (mod k),
we have v′ ≥ v + k. Similarly u ≤ u′ − k. so v′ − u ≥ v − u′ + 2k. Since u′ < 0 ≤ v, we have v − u′ ≥ 1. So
v′ − u ≥ 2k + 1. It follows that I definitely contains the all the elements u + 1, u + 2 · · · , u + 2k + 1 except u + k
and u+ 2k. So |I| ≥ 2k − 1. Since k ≥ 1

2g + 1, it follows that invk(τu,vD ) ≥ |I| ≥ g + 1, which contradicts k-general
transmission.

Remark 16. The bound k ≥ 1
2g + 1 in Proposition 6.1 is sharp. This is because one can construct, for any g ≥ 1

and k ≥ 2, twice-marked graphs (G, u, v) such that ku ∼ kv and r(ku) = 1 (for example, a chain of loops glued at
points differing by k-torsion). The bound k ≥ 1

2g + 1 is equivalent to ρ(g, 1, k) ≥ 0, so if k < 1
2g + 1 there exist

twice-marked graphs with k-general transmission that are not Brill–Noether general.

As proved in [27, Theorem A], chaining twice-marked graphs of the same torsion order preserves k-general
transmission, so can deduce an easy but somewhat restrictive criterion for Brill–Noether generality of chains.

Corollary 6.2. Let (Gi, ui, vi), for i = 1, 2, · · · , `, be a sequence of ` twice-marked graphs, and (G, u, v) = (G, u1, v`)
the iterated vertex gluing. Let gi be the genus of Gi. If each (Gi, ui, vi) has k-general transmission for the same value
of k, and k ≥ 1

2 (g1 + · · ·+ g`) + 1, then G is Brill–Noether general.

Proposition 6.1 also provides the last ingredient needed to prove a slightly strengthened form of Theorem 1.14.

Corollary 6.3. The only banana graphs of genus ≥ 3 which have k-general transmission are (Bn0,··· ,ng , vα,1, vβ,1)
with α 6= β, nα = nβ = 2; these examples have 2-general transmission.

Proof. Suppose that (Bn0,··· ,ng , vα,1, vβ,1) has k-general transmission. Then all divisors are submodular, so Propo-
sition 4.17 shows that either we are in the torsion order 2 case described in the statement, or k ≥ g. Suppose for
contradiction that we are in the latter case. Since g ≥ 3, this implies k ≥ 1

2g+ 1, so Proposition 6.1 implies that the
banana graph Bn0,··· ,ng is Brill–Noether general. But this contradicts Lemma 2.18, since we assume g ≥ 3.

Remark 17. Although we defined the notion of evenly marked only in genus 2, it’s noteworthy that the higher genus
banana graphs with 2-general transmission satisfy a natural extension of that definition. Moreover, by Theorem 3.8,
we get that a banana graph of genus ≥ 3 has k-general transmission if and only if it is evenly marked and every
divisor is submodular. This description is a bit misleading because the hypothesis is extremely restrictive; the only
evenly marked banana graph of genus ≥ 3 on which every divisor is submodular are the torsion order 2 graphs
discussed in the corollary.
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6.2 Attaching a twice-marked graph to a one-marked graph

Attaching a twice-marked graph with k-general transmission preserves Brill–Noether generality of a once-marked
graph, as long as k is large enough.

Theorem 6.4. Let (G1, u1, v1), (G2, u2, v2) be two twice-marked graphs of genera g1, g2 on which all divisors are
submodular, and denote by (G, u, v) = (G, u1, v2) their vertex gluing. Suppose that (G1, v1) is Brill–Noether general
as a marked graph, and (G2, u2, v2) has k-general transmission, where k > g1 + g2. Then (G, v) is Brill–Noether
general.

Remark 18. The marked point u1 is seemingly extraneous here, since it is only the divisor theory of (G1, v1) that
we care about. Indeed, we are quite confident that Theorem 6.4 remains true if u1 is not mentioned, and indeed
without the “all divisors submodular on (G1, u1, v1)” hypothesis. However, we include this assumption to simplify
exposition, as it allows the machinery of Demazure products to be used directly.

We establish this theorem of the course of this subsection. Before doing so, we note that we can take G1 to
be a single vertex (genus 0) in Theorem 6.4 to obtain Brill–Noether generality of once-marked graphs obtained by
forgetting one marked point on a twice-marked graph with k-general transmission, provided that k is large enough.

Corollary 6.5. If (G, u, v) is a twice-marked graph of genus g with k-general transmission, and k > g, then (G, v)
is a Brill–Noether general once-marked graph.

We now proceed to the proof of Theorem 6.4. We must first relate Weierstrass partitions to transmission permu-
tations; the key mechanism is the following count.

Definition 6.6. For α ∈ ASP a sign-changing inversion is a pair (u, v) ∈ Z2 with u < v and α(u) > 0 ≥ α(v).
Denote the number of sign-changing inversions by sci(α).

Proposition 6.7. If D is a submodular divisor on a twice-marked graph (G, u, v), then

sci(τu,vD ) = |λ(D, v)| .

Proof. To simplify notation, write si instead of si(D, v). The numbers s0, s1, · · · are precisely the integers ` such
that r(D + `v) > r(D + (`− 1)v). By definition of τu,vD , these are the integers ` such that τu,vD (−`) ≤ 0. Hence the
sign-changing inversions of τu,vD are the pairs (u, si), where i ≥ 0, u < si, and τu,vD (u) > 0. It follows that

sci(τu,vD ) =

∞∑
i=0

#{u < si : τu,vD (u) > 0}

=

∞∑
i=0

(r(KG −D − siv) + 1)

=

∞∑
i=0

(r(D + siv)− deg(D + siv) + g) (by Riemann–Roch)

=

∞∑
i=0

(i− degD − si + g) .

This last sum is equal to

∞∑
i=0

λi = |λ|.

Before proceeding, we require some facts about a certain associative operation on permutations, the Demazure
product, which we denote by ?. For our purposes, this operation is defined on the group ASP of almost-sign-preserving
permutations, consisting of all bijections α : Z→ Z for which n and α(n) have the same sign for all but finitely many
n. To each α ∈ ASP we associate a function sα : Z2 → Z≥0 given by

sα(a, b) = #{` ≥ b : α(`) < a}.

The Demazure product is characterized by the following min-plus matrix multiplication formula.

sα?β(a, b) = min {sα(a, `) + sβ(`, b) : ` ∈ Z} .
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Theorem A of [26] proves that this formula uniquely determines a well-defined associative operation on ASP. We
also use a handy formula for specific computations. Following the notation of [26], we will write, for a set S ⊆ Z
containing no two consecutive integers, σS for the permutation exchanging n and n + 1 for all n ∈ S, but fixing all
other integers. By [26, Theorem 8.7], we have for all α ∈ ASP and sets S as above,

α ? σS = ασT where T = {` ∈ S : α(`) < α(`+ 1)}. (8)

The relation between ? and divisors on graphs is established in [25, Theorem 3.11]: if (G, u, v) is the vertex
gluing of (G1, u1, v1) and (G2, u2, v2), D1 is a submodular divisor on G1, and D2 is a submodular divisor on G2, then
D = D1 +D2, regarded as a divisor on G, is also submodular and has transmission permutation given by

τu,vD = τu1,v1
D1

? τu2,v2
D2

. (9)

Remark 19. Because [25] was written before [26], the results in [25] are phrased in a way that does not assume ? is
well-defined for all pairs of permutations, but they quickly imply the above claims in light of the results of [26].

Lemma 6.8. Let k ≥ 2 be an integer, and α ∈ ASP a permutation with sci(α) ≤ k − 2. For any integer n,

sci(α ? σkn) ≤ sci(α) + 1.

Proof. By Equation (8), we have

α ? σkn = ασS , where S = {` ∈ n+ kZ : α(`) < α(`+ 1)}.

For any pair (u, v) with u < v, (u, v) is a sign-changing inversion of ασS if and only if either

1) (u, v) is not an inversion of σS and (σS(u), σS(v)) is a sign-changing inversion of α, or

2) (u, v) is an inversion of σS , and ασS(u) > 0 ≥ ασS(v).

Both of these statements can be simplified. The definition of S implies that α and σS have no inversions in common,
so the first phrase of case 1) is redundant. This gives an embedding of the sign-changing inversions of α into those
of ασS . The remaining sign-changing inversions of ασS are those described in case 2). The only inversions of σS are
(`, `+ 1) for ` ∈ S, so we may write

sci(ασS) = sci(α) + #{` ∈ S : α(`) ≤ 0 < α(`+ 1)}.

Therefore it suffices to demonstrate that there is at most one integer ` ∈ S such that α(`) ≤ 0 < α(` + 1). We
establish this by contradiction. Suppose that m1,m2 ∈ S are two such integers, with m1 < m2. Then m2 −m1 ≥ k,
since they are congruent modulo k. Now, for each integer u with m1 + 2 ≤ u ≤ m2 − 1, either (m1 + 1, u) or (u,m2)
is a sign-changing inversion of u, depending on whether or not α(u) ≤ 0. This accounts for m2 −m1 − 2 ≥ k − 2
sign-changing inversions of α. Furthermore, (m1 + 1,m2) is an additional sign-changing inversion. So α has at least
k − 1 sign-changing inversions. This contradiction completes the proof.

Proposition 6.9. Suppose α ∈ ASP and β ∈ Σ̃k satisfy

k > sci(α) + invk(β).

Then
sci(α ? β) ≤ sci(α) + invk(β).

Proof. We proceed by induction on invk(β). If invk(β) = 0, then β is a shift permutation ιd and thus sci(α ? β) =
sci(αβ) = sci(α).

Now suppose that invk(β) = n > 0. This implies that (n, n + 1) is an inversion of β for some n ∈ Z. Note that
this implies that sci(α) ≤ k− 2. Then σknβ does not have any inversions in common with σkn, so Equation (8) implies
β = σkn ? (σknβ). Using this and the associativity of ?, we can write:

α ? β = α ? σknσ
k
nβ = α ? (σkn ? (σknβ)) = (α ? σkn) ? (σknβ).

Then σknβ has one fewer k-inversion so by induction and Lemma 6.8 we have that

sci(α ? β) = sci((α ? σkn) ? (σknβ)) ≤ sci(α ? σkn) + invk(σknβ) ≤ sci(α) + 1 + invk(β)− 1 = sci(α) + invk(β).
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Proof of Theorem 6.4. Assume (G1, v1) is Brill–Noether general and has all divisors submodular, and that (G2, u2, v2)
has k-general transmission, where k > g1 + g2. Then the vertex gluing has all divisors submodular; this follows from
Equation (9). Let D be any divisor on G, and split D into D = D1 +D2, where D1 is a divisor on G1 and D2 is a
divisor on G2. Then by Equation (9), D is submodular, and

τu1,v2
D = τu1,v1

D1
? τu2,v2

D2
.

Since (G1, v1) is Brill–Noether general, Proposition 6.7 implies that sci(τu1,v1
D1

) = |λ(D1, v1)| ≤ g1. Since
(G2, u2, v2) has k-general transmission, invk(τu2,v2

D2
) ≤ g2. Therefore k > g1+g2 implies k > sci(τu1,v1

D1
)+invk(τu2,v2

D2
),

and Proposition 6.9 implies

|λ(D, v)| = sci(τu,vD ) = sci(τu1,v1
D1

? τu2,v2
D2

) ≤ sci(τu1,v1
D1

) + invk(τu2,v2
D2

) ≤ g1 + g2.

So (G, v) is Brill–Noether general.

6.3 Attaching two once-marked graphs

Attaching two Brill–Noether general once-marked graphs behaves as one would hope.

Proposition 6.10. If (G1, v1) and (G2, v2) are two Brill–Noether general marked graphs of genera g1, g2, and G is
the genus g = g1 + g2 graph obtained by gluing v1 to v2, then G is Brill–Noether general.

Proof. Fix a divisor D on G, and split D as a sum D = D1 + D2, where D1 is a divisor on G1 and D2 is a divisor
on G2. Abbreviate degD1,degD2 by d1, d2. By [27, Prop. 3.15],

rG(D) = min {rG1(D1 + `v1) + rG2(D2 − (`+ 1)v2) + 1 : ` ∈ Z} .

In this formula, subscripts of r indicate the graph considered when rank is computed, e.g. rG1(D1) refers to the rank
of D1 as a divisor on G1, not as a divisor on G. This notation should not be confused with the notation rW used in
the discussion of rank-determining sets in Lemma 2.19.

We will use this formula for r(D) to obtain a lower bound on the Weierstrass partitions of D1 and D2. For
simplicity of notation, we write λ(D1, v1) to refer to the Weierstrass partition of D1 as a divisor on (G1, v1), and use
the notation s(D1, v1) similarly. The same remarks apply to D2 on G2.

The formula for rG(D) implies that for all ` ∈ Z,

rG1(D1 + `v1) + rG2(D2 − (`+ 1)v2) ≥ r − 1.

Fix an integer i ∈ {0, 1, · · · , r}, and let ` = si(D1, v1) − 1 in the formula above. Then rG1(D1 + `v1) = i − 1 by
definition, so the inequality is equivalent to rG2(D2 − (`+ 1)v2) ≥ r − i. Equivalently, −(`+ 1) ≥ sr−i(D2, v2). By
our choice of `, this is equivalent to

0 ≥ si(D1, v1) + sr−i(D2, v2).

Now, using the definition of Weierstrass partitions, this inequality is equivalent to

0 ≥ i+ g1 − d1 − λi(D1, v1) + r − i+ g2 − d2 − λr−i(D2, v2).

Upon writing g = g1 + g2 and d = d1 + d2, this is equivalent to

λi(D1, v1) + λr−i(D2, v2) ≥ g − d+ r.

This inequality on Weierstrass partitions must hold for all i ∈ {0, 1, · · · , r}. Summing gives

|λ(D1, v1)|+ |λ(D2, v2)| ≥ (r + 1)(g − d+ r).

Since we assumed that (G1, v1) and (G2, v2) are Brill–Noether general marked graphs, it follows that |λ(D1, v1)| +
|λ(D2, v2)| ≤ g1 + g2 = g, and the result follows.

Remark 20. The proof above can be reorganized slightly to give the following formula for r(D).

r(D) = min {r ∈ Z : λi(D1, v1) + λr−i(D2, v2) ≥ g − d+ r for all i ∈ {0, 1, · · · , r} } .

Note that the condition in this set of possible r is vacuous when r = −1, so r(D) ≥ −1 for all D (as it should be).
This formula is reminiscent of the “compatibility condition” for limit linear series on nodal algebraic curves (see for
example [10, Definition 5.33] and the surrounding discussion).
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We now Theorem 1.11 from the introduction.

Corollary 6.11 (Theorem 1.11). Let (Gi, ui, vi), for i = 1, 2, · · · , `, be a sequence of ` twice-marked graphs, and
(G, u, v) = (G, u1, v`) the iterated vertex gluing. Let gi and ki be the genus of Gi and torsion order of (Gi, ui, vi),
respectively.

1) If ki > g1 + g2 + · · ·+ gi for all i, then (G, v) is a Brill–Noether general marked graph.

2) if ki > min {g1 + g2 + · · · gi, gi + gi+1 + · · ·+ g`} for all i, then G is a Brill–Noether general graph.

Proof. Part 1) follows by induction on `, using Theorem 6.4 for the inductive step. Part 2) follows from Proposition
6.10 upon splitting the chain into two once-marked chains of genera g1 + · · · + gj and gj+1 + · · · g`, where j is the
maximum index such that g1 + · · ·+gj ≤ gj +gj+1 + · · · g`. This choice of ` means that both halves are Brill–Noether
general marked graphs, by part 1).
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