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Abstract

Our results are on the interconnected topics of quantum Jacobi sums of tails identities,
quantum Jacobi and mock Jacobi properties of two-variable q-hypergeometric series
and partial theta functions, and two-variable q-hypergeometric generating functions
for certain L-values by way of related asymptotic expansions. More specifically, we
establish five two-variable quantum Jacobi sums of tails identities. As corollaries, we
recover known one-variable quantum sum of tails identities due to Zagier,
Andrews-Jiménez-Urroz-Ono, and more. Further, justifying the “quantum Jacobi”
description of our two-variable sums of tails identities, we establish the quantum Jacobi
and mock Jacobi properties of a number of two-variable q-hypergeometric series and
partial Jacobi theta functions which appear in our two-variable sums of tails identities,
inspired by related results of Zagier and Rolen-Schneider in the one-variable quantum
modular setting. Finally, by establishing related asymptotic expansions, we realize
generating functions for certain L-values in terms of two-variable q-hypergeometric
series and Jacobi partial theta functions, inspired by earlier work in this direction by
Andrews–Jiménez-Urroz–Ono for the Riemann ζ -function and Dirichlet and Hecke
L-functions.

1 Introduction and statement of results
Early sums of tails identities include the following, found in Ramanujan’s “Lost” Notebook
[24, p14]:
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where here and throughout, the q-Pochhammer symbol is defined for n ∈ N0 ∪ ∞ by
(a; q)n:=∏n−1

j=0 (1 − aqj). These are referred to as “sums of tails” identities, as their left-
hand sides are sumsof differences between infinite products and theirnth partial products.
The q-hypergeometric series
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R(q):=
∞∑

n=0

q
n(n+1)

2

(−q; q)n

on the right-hand sidesmay be viewed as a combinatorial generating function, namely, for
the difference between the number of partitions into distinct parts with even rank minus
those with odd rank. In 1986, Andrews proved the above sums of tails identities, roughly
10 years after unearthing the “Lost” Notebook [1]. Shortly thereafter, the coefficients of
the function R(q) were also shown to be defined by a Hecke L-function

L(χ , s):=
∑

a⊆Z[
√
6]

χ (a)
N (a)s

,

where χ is an order 2 character of conductor 4(3 + √
6) on ideals in Z[

√
6] [2,12].

Partiallymotivated by finding values of certain other L-functions, in 2001, Zagier in [27],
and Andrews, Jiménez-Urroz, and Ono in [4], established other sums of tails identities,
including this one from [27]
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denotes the Jacobi symbol, and these two from [4]
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In a different direction, later, in 2010, Zagier introduced the notion of a quantummod-
ular form in [28]. Loosely speaking, a quantum modular form is a C-valued function
defined in Q (as opposed to the upper half-plane H in the case of modular forms) and
which exhibitsmodular-like transformation properties there, up to the addition of smooth
error functions in R (see [8,28] for further details, and for more on the developing theory
of quantum modular forms). In [28] Zagier also offered the first handful of examples of
quantum modular forms, one of which is the function

φ(x):=eπ ix/12
∞∑

n=0
(e2π ix; e2π ix)n.

In particular, Zagier shows that for x ∈ Q \ {0}, the function φ satisfies

φ(x) − sgn(x)ζ8|x| 32 φ(−1/x) = g(x),

where g is analytic in R \ {0}. Here and throughout, we let ζm:=e2π i/m. A key ingredient
used by Zagier in establishing the quantum modularity of φ(x) is his sum of tails identity
(1.1). More recently in [25], Rolen and Schneider show that three other q-hypergeometric
sums (similar to φ(x)) are also quantum modular forms, and they use the sums of tails
identities of Andrews, Jiménez-Urroz, and Ono in (1.2) and (1.3) to do so.
More recently in 2016, Bringmann and the first author defined the notion of a quantum

Jacobi form and offered the first example in [7], an example which has combinatorial
meaning (like R(q) above). Quantum Jacobi forms are a marriage of quantum modular
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forms (as originally defined by Zagier as mentioned above) with Jacobi forms, the theory
of which was largely developed by Eichler and Zagier in the 1980s [13]. These functions
take values in C, are defined in Q × Q (as opposed to C × H in the case of Jacobi forms)
and which exhibit Jacobi transformation properties there, up to the addition of smooth
error functions in R × R. Precisely, we have the following definition from [7].

Definition 1.1 A weight k ∈ 1
2Z and indexm ∈ 1

2Z quantum Jacobi form is a complex-

valued function φ on Q × Q such that for all γ =
(
a b
c d

)
∈ SL2(Z) and (λ,μ) ∈ Z × Z,

the functions hγ : Q × (Q \ γ −1(i∞)) → C and g(λ,μ) : Q × Q → C defined by

hγ (z; τ ) := φ(z; τ ) − ε−1
1 (γ )(cτ + d)−ke

−2π imcz2
cτ+d φ

(
z

cτ + d
;
aτ + b
cτ + d

)
,

g(λ,μ)(z; τ ) := φ(z; τ ) − ε−1
2 ((λ,μ))e2π im(λ2τ+2λz)φ(z + λτ + μ; τ ),

satisfy a “suitable” property of continuity or analyticity in a subset of R × R.

Remarks (1) The complex numbers ε1(γ ) and ε2((λ,μ)) satisfy |ε1(γ )| = |ε2((λ,μ))| =
1; in particular, the ε1(γ ) are such as those appearing in the theory of half-integral
weight modular forms.

(2) We may modify the definition to allow modular transformations on appropriate
subgroups of SL2(Z). We may also restrict the domain to be a suitable subset of
Q × Q.

(3) The “suitable” property of continuity or analyticity required is intentionally left some-
what vague in order to mimic Zagier’s definition of a quantum modular form [28].

Like the subject of quantummodular forms, the subject of quantumJacobi formscontinues
to develop; the known examples of quantum Jacobi forms to date have been established in
[5–7,11,15]. Moreover, like quantum modular forms, quantum Jacobi forms arise in the
diverse areas of Number Theory, Combinatorics, Topology, and Mathematical Physics.
Here, our results are multifold and are motivated by the interconnected topics which

have been discussed above. Our sums of tails results are given in Sect. 1.1; our related
quantum Jacobi results are given in Sect. 1.2, and our related results on L-values are given
in 1.3.

1.1 Jacobi sums of tails identities

First, we establish two-variable sums of tails identities in Proposition 1.2; fromProposition
1.2, we obtain as corollaries Zagier’s sum of tails identity (1.1), and Andrews, Jiménez-
Urroz, and Ono’s identities (1.2) and (1.3), and one more. Before stating these results,
we define the combinatorial q-hypergeometric series Pn(w; q), n ∈ N0, which makes an
appearance in our results:

Pn(w; q):=
∞∑

m=0
(−w2)mq

m(m+1)
2

[
m + n
m

]
.

Here and throughout, the q-binomial coefficients are defined by
[
m
n

]
:= (q; q)m

(q; q)n(q; q)m−n
.
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We later explain in the proof of Lemma 2.10 that

Pn(w; q) =
∞∑

k=0

∞∑

m=0
αn(k,m)(−w2)mqk ,

whereαn(k,m) = p(k |m distinct parts, rank ≤ n) counts the number of integer partitions
of n into k distinct parts with rank at mostm.
We also define the following two-variable partial Jacobi theta functions θj(w; q), 1 ≤ j ≤

3, by
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(−w2)nqn

2
, (1.4)
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and the two-variable divisor-type function

D(w; q):=(w2q; q)∞
∞∑

n=1

∑

d|n
w2dqn.

Proposition 1.2 We have the following sums of tails identities:
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.

Remark Wemay view the identities (iv.) and (v.) in Proposition 1.2 involving the combi-
natorial q-hypergeometric series Pn(w; q) as sums of tails identities due to the fact that

lim
n→∞Pn(w; q) = (w2q; q)∞,

which we explain in Lemma 2.11.

As corollaries to results in Proposition 1.2, we deduce Zagier’s (1.1), and (1.2) and (1.3)
by Andrews, Jiménez-Urroz, and Ono (see Corollary 1.3 (i) − −(iii)), as well as a similar
identity (see Corollary 1.3 (iv.)) due to Patkowski [22]. To state this corollary, we define
the partial theta functions θ1(q), θ2(q), θ3(q) by
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1.2 Quantum Jacobi forms from sums of tails identities

Next, motivated by the quantum modularity of certain (one-variable) q-hypergeometric
series appearing in sums of tails identities (see (1.1)-(1.3)) as established by Zagier and
Rolen-Schneider, here we show how the two-variable q-hypergeometric series

H1(w; q):=
∞∑

n=0

(wq; q)n
(−wq; q)n

wn, H2(w; q):=
∞∑

n=0

(wq2; q2)n
(wq; q2)n+1

wn, (1.7)

H3,1(w; q):=
∞∑

n=0
(wq; q)nwn, H3,2(w; q):=

∞∑

n=0
Pn(w; q)wn (1.8)

and the partial Jacobi theta functions θ1(w; q), θ2(w; q), θ3(w; q), appearing in our sums of
tails identities from Proposition 1.2, are quantum Jacobi forms (up to suitable normaliza-
tion and changes of variables). In fact, we show a stronger property, that these functions
are additionally simultaneously “dual” to mock Jacobi forms in C × H

−, where H
− is

the lower half complex plane. By mock Jacobi form, we mean a function which is the
holomorphic part of a nonholomorphic Jacobi form (see [8,29]). For more details on the
aforementioned duality, see Sects. 4.1–4.3, where we elaborate on and make more precise
Theorem 1.4 below.

Theorem 1.4 Up to suitable normalization and changes of variables, the two variable
q-hypergeometric series

H1(w; q), H2(w; q), H3,1(w; q), H3,2(w; q),

and the partial Jacobi theta functions

θ1(w; q), θ2(w; q), θ3(w; q),

are quantum Jacobi forms, when viewed as functions defined in (a subset of) Q × Q. More-
over, they are dual to mock Jacobi forms in C × H

−.
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Remarks (1) WemakeTheorem1.4 precise inTheorem4.1, Theorem4.3, andTheorem
4.6 in what follows.

(2) Up to suitable normalizations and changes of variables, the functions θ1(q), θ2(q),
θ3(q), and H1(1; q), H2(1; q), H3;1(1; q), and H3,2(1; q) are quantum modular forms
when viewed as functions inQ. For all of these functions exceptH3,2(1; q), this follows
from results in [25] and [28]; in the case ofH3,2(1; q), the quantummodularity follows
from (iv.) of Corollary 1.3 and work in [28]. Similarly, for one-variable quantum
modular properties of these functions for other specializations of variables (e.g., for
fixed w = ζ a

b ) see [10,17,18,20].

1.3 q-Hypergeometric generating functions for L-values

Our next set of results establish asymptotic expansions for the aforementioned q-
hypergeometric series and partial Jacobi theta functions towards roots of unity; as is
shown in Theorem 1.5 below, these asymptotic expansions feature certain L-values as
coefficients. We refer the interested reader to [4] for more results along these lines with
respect to the Riemann ζ -function and Dirichlet and Hecke L-functions.
Theorem 1.5 also offers two diverse ways to evaluate the relevant q-hypergeometric

and partial Jacobi theta functions at pairs of roots of unity. It is a question of interest
to find a direct proof of the equivalence of two such given expressions, avoiding the
methods of proof used here, and instead using, for example, elements from the theory of
q-hypergeometric series, partial theta functions, or other elementary or direct methods.
Here and throughout, Br(x) denotes the rth Bernoulli polynomial. Throughout, we say

that a rational number r/s is reduced if gcd(r, s) = 1, r ∈ Z and s ∈ N.

Theorem 1.5 The following are true.
(1) Let

(
a
b ,

h
k

)
∈ S1:=

{(
a
b ,

h
k

)
∈ Q

2 ∣∣ a
b ,

h
k are reduced, b | k, and k is odd

}
.

We have the following asymptotic expansion as t → 0+:

(1 − ζ a
b )H1(ζ a

b ; ζ
h
k e
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b ; ζ

h
k e

−t ) ∼ 1 + 2
∞∑
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L(−2r, c1)

(−t)r

r!
,

where the L-values are given by

L(−r, c1) = − (2k)r

r + 1

2k∑

n=1
c1(n)Br+1

( n
2k

)
, (r = 0, 1, 2, . . . )

with

c1(n) = (−1)nζ 2an
b ζ hn2

k .

Further, these function can be evaluated in the following two different ways:

(1 − ζ a
b )H1(ζ a

b ; ζ
h
k ) = θ1(ζ a

b ; ζ
h
k ) = 1 − 1

k

2k∑

n=1
n(−1)nζ 2an

b ζ hn2
k ,

= (1 − ζ a
b )

N1−1∑

n=0

(ζ a
b ζ h

k ; ζ
h
k )n

(−ζ a
b ζ h

k ; ζ
h
k )n

ζ an
b ,



A. Folsom et al. Res. Number Theory             (2022) 8:8 Page 7 of 24     8 

where N1 = N1(a, b, h, k) is the smallest non-negative integer congruent to ah′k/b
(mod k), where h′ is any integer satisfying hh′ ≡ −1 (mod k).
(2) Let

(
a
b ,

h
k

)
∈ S2:=

{(
a
b ,

h
k

)
∈ Q

2 ∣∣ a
b ,

h
k are reduced, b | k, k is even, and ak/b is even

}
.

We have the following asymptotic expansion as t → 0+:
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b )e

−t/8H2(ζ a
b ; ζ

h
k e

−t ) = e−t/8θ2(ζ a
b ; ζ

h
k e

−t ) ∼
∞∑

r=0
L(−2r, c2)

(−t)r

8r · r! ,

where the L-values are given by

L(−r, c2) = − (8k)r

r + 1

8k∑

n=1
c2(n)Br+1

( n
8k

)
, (r = 0, 1, 2, . . . )

with

c2(n) =
⎧
⎨

⎩
ζ
a(n−1)
2b ζ

h(n2−1)
8k , n odd,

0, else.

Further, these function can be evaluated in the following two different ways:

(1 − ζ a
b )H2(ζ a

b ; ζ
h
k ) = θ2(ζ a

b ; ζ
h
k ) = − 1

8k

8k∑

n=1
nodd

nζ
a(n−1)
2b ζ

h(n2−1)
8k ,

= (1 − ζ a
b )

N2−1∑

n=0

(ζ a
b ζ 2h

k ; ζ 2h
k )n

(ζ a
b ζ h

k ; ζ
2h
k )n+1

ζ an
b ,

where N2 = N2(a, b, h, k) is the smallest non-negative integer congruent to ah′k/(2b)
(mod k/2), where h′ is any integer satisfying hh′ ≡ −1 (mod k).
(3) Let

(
a
b ,

h
k

)
∈ S3:=

{(
a
b ,

h
k

)
∈ Q

2 ∣∣ a
b ,

h
k are reduced, b | k

}
.

We have the following asymptotic expansion as t → 0+:

(1 − ζ a
b )e

−t/24H3,j(ζ a
b ; ζ

h
k e

−t ) = e−t/24θ3(ζ a
b ; ζ

h
k e

−t ) ∼
∞∑

r=0
L(−2r, c3)

(−t)r

24rr!
,

for j ∈ {1, 2}, where the L-values are given by

L(−r, c3) = − (12k)r

r + 1

12k∑

n=1
c3(n)Br+1

( n
12k

)
, (r = 0, 1, 2, . . . )

with

c3(n) = c3(a, b, h, k ; n):=
(
12
n

)
ζ
h(n2−1)
24k ζ

a(n−1)
2b .

Further, these functions can be evaluated in the following two different ways:

(1 − ζ a
b )H3,j(ζ a

b ; ζ
h
k ) = θ3(ζ a

b ; ζ
h
k ) = − 1

12k

12k∑

n=1
nc3(n),

= (1 − ζ a
b )

N3−1∑

n=0
(ζ a
b ζ h

k ; ζ
h
k )nζ

an
b ,
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for j ∈ {1, 2}, where N3 = N3(a, b, h, k) is the smallest non-negative integer congruent to
ah′k/b (mod k), where h′ is any integer satisfying hh′ ≡ −1 (mod k).

2 Preliminaries
Wedevote this section to establishing or recalling somepreliminary results, before proving
our main results in the sections that follow this one. In addition to the references in the
subsections below, we refer the reader to [8] for additional background.

2.1 Modular and Jacobi forms

In this section we recall the definitions and some properties of the functions

η(τ ):=q
1
24

∞∏

n=1
(1 − qn),ϑ(z; τ ):=

∑

n∈Z+ 1
2

eπ in
2τ+2π in(z+ 1

2 ), (2.1)

where τ ∈ H and z ∈ C. These functions satisfy the modular and Jacobi transformations
in Lemma 2.1 and Lemma 2.2, respectively [23].

Lemma 2.1 For γ = ( A B
C D
) ∈ SL2(Z) and τ ∈ H,

η(γ τ ) = ε(γ )(Cτ + D)
1
2 η(τ ),

where for C > 0,

ε(γ ) =
⎧
⎨

⎩

1√
i

(
D
C

)
i(1−C)/2eπ i(BD(1−C2)+C(A+D))/12 if C is odd,

1√
i

(
C
D

)
eπ iD/4eπ i(AC(1−D2)+D(B−C))/12 if D is odd.

(2.2)

Lemma 2.2 For λ,μ ∈ Z, γ = ( A B
C D
) ∈ SL2(Z), and (z, τ ) ∈ C × H,

(i) ϑ (z + λτ + μ; τ ) = (−1)λ+μq− λ2
2 e−2π iλzϑ(z; τ ),

(ii) ϑ

(
z

Cτ + D
; γ τ

)
= ε3(γ )(Cτ + D)

1
2 e

π iCz2
Cτ+D ϑ(z; τ ),

(iii) ϑ(z; τ ) = −iq
1
8w− 1

2

∞∏

n=1
(1 − qn)(1 − wqn−1)(1 − w−1qn).

Using η and ϑ we define (as in [15]) the functions

N (τ ):= η(τ )
η2(2τ )

, and T (τ ):=ϑ(−τ + 1
2 ; 4τ ).

It is not difficult to show that

N (τ )T (τ ) = −q− 1
8 , (2.3)

a fact which we will use later. We will also use the following lemma on the modular
transformation properties of N and T .

Lemma 2.3 Let γ = ( A B
C D
) ∈ SL2(Z)with C even, and define γ̃ :=

(
A 2B

C/2 D

)
. We have that

N (γ τ ) = (cτ + d)−
1
2 ε(γ )ε−2(γ̃ )N (τ ). (2.4)
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Moreover, we have that

T
(

τ

4τ + 1

)
= (4τ + 1)

1
2 e

π iτ2
4τ+1T (τ ). (2.5)

Proof The proof of (2.4) follows immediately from Lemma 2.1. Similarly, (2.5) follows
from 2.2 and that ϑ(z; τ ) is an odd function of z. �

A specific function defined using η, N , and ϑ , that we will encounter in what follows is

J (z; τ ):= − i
N (τ )η3(τ )
ϑ(z/2; τ )

.

It is not difficult to show using Lemma 2.1 and Lemma 2.2 that J is a Jacobi form, and in
particular exhibits a certain transformation property with respect to the variables (z, τ ) ∈
C × H (see [8,13] for further details on Jacobi forms).

Lemma 2.4 The function J (z; τ ) is a Jacobi form of weight 1/2, index −1/8, on 
0(2) �

(4Z × 2Z), with character ψγ .

2.2 The level 2 Appell function and related functions

The level 2 Appell function A2 is defined for z1, z2 ∈ C, τ ∈ H by

A2(z1, z2; τ ):=ξ1
∑

n∈Z

ξn2 qn(n+1)

1 − ξ1qn
, (2.6)

where ξj = e(zj), j ∈ {1, 2}. (Note. Here and throughout, we use the notation e(u):=e2π iu.)
This function was studied as one of a more general family of Appell functions by Zwegers
(see [8]). The completion of A2, denoted by Â2, is defined by

Â2(z1, z2; τ ):=

A2(z1, z2; τ ) + i
2

1∑

j=0
e2π ijz1ϑ

(
z2 + jτ + 1

2
; 2τ
)
R
(
2z1 − z2 − jτ − 1

2
; 2τ
)
, (2.7)

where the nonholomorphic function R is defined by

R(z; τ ):=
∑

ν∈ 1
2+Z

{
sgn(ν) − E

(
(ν + λ)

√
2y
)}

(−1)ν− 1
2 e−π iν2τ−2π iνz, (2.8)

with y:= Im(τ ), λ:= Im(z)
Im(τ ) and

E(z):=2
∫ z

0
e−πu2du.

The completed function exhibits Jacobi-like transformation properties:

Lemma 2.5 For n1, n2, m1, m2 ∈ Z, γ = ( a b
c d
) ∈ SL2(Z), the function Â2 satisfies the

following transformation properties:

(i) Â2(−z1,−z2; τ ) = −Â2(z1, z2; τ ),
(ii) Â2(z1 + n1τ + m1, z2 + n2τ + m2; τ ) = ξ

2n1−n2
1 ξ

−n1
2 qn21−n1n2Â2(z1, z2; τ ),

(iii) Â2
(

z1
cτ+d ,

z2
cτ+d ; γ τ

)
= (cτ + d)e

π ic
cτ+d (−2z21+2z1z2)Â2(z1, z2; τ ).

From [29, Proposition 1.9, Proposition 1.10], we also have the following transformation
properties of R.
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Lemma 2.6 With hypotheses as above, R satisfies the following transformation properties:

(i) R(z; τ + 1) = e−
π i
4 R(z; τ ),

(ii)
1√−iτ

e
π iz2

τ R
(
z
τ
;−1

τ

)
+ R(z; τ ) = h(z; τ ),

(iii) R(z; τ ) = R(−z; τ ),
(iv) R(z; τ ) + e−2π iz−π iτR(z + τ ; τ ) = 2e−π iz−π iτ/4 ,
(v) R(z + 1; τ ) = −R(z; τ ).

The Mordell integral h given in Lemma 2.6 (ii) is defined for z ∈ C, τ ∈ H by

h(z; τ ):=
∫

R

eπ iτu2−2πzu

cosh(πu)
du. (2.9)

Under suitable hypotheses, h can be expressed in terms of the weight 3/2 theta functions
gA,B, defined for A, B ∈ R and τ ∈ H by

gA,B(τ ):=
∑

ν∈A+Z

νeπ iν
2τ+2π iνB. (2.10)

Due to Zwegers [29], we have

Lemma 2.7 For A, B ∈ (− 1
2 ,

1
2 ),

∫ i∞

0

gA+ 1
2 ,B+ 1

2
(z)

√−i(z + τ )
dz = −e−π iA2τ+2π iA

(
B+ 1

2

)

h(Aτ − B; τ ).

The functions gA,B transform as follows [26,29].

Lemma 2.8 With hypotheses as above, the functions gA,B satisfy:

(i) gA+1,B(τ ) = gA,B(τ ),
(ii) gA,B+1(τ ) = e2π iAgA,B(τ ),
(iii) gA,B(τ + 1) = e−π iA(A+1)gA,A+B+ 1

2
(τ ),

(iv) gA,B
(− 1

τ

) = ie2π iAB(−iτ )
3
2 gB,−A(τ ),

(v) g−A,−B(τ ) = −gA,B(τ ).

Using A2 and its completion, we define

B1,2(z; τ ):=e
π iz
2 A2

(−z
2
,−τ ; 2τ

)

and

B̂1,2(z; τ ):=e
π iz
2 Â2

(−z
2
,−τ ; 2τ

)
.

Our notation for these functions are chosen to parallel the notation given for the functions
Bα,β and B̂α,β in [15]. In [15], it is required that 4 | β , so the functions B1,2 and B̂1,2 defined
above do not appear in [15], though they are closely related to the families Bα,β and B̂α,β
appearing there.
Using Proposition 2.5 we establish the following proposition.

Proposition 2.9 The function

B̂1,2(z; τ ):=e
( z
4

)
Â2
(
− z
2
,−τ ; 2τ

)

is a non-holomorphic Jacobi form of weight 1, index −1/8, on 
0(2) � (4Z × 2Z).
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Proof of Proposition 2.9 Let
( A B
C D
) ∈ 
0(2). Then using the Jacobi modular transforma-

tion properties of Â2 in Lemma 2.5, and the fact that C is even, we have that

B̂1,2

(
z

Cτ + D
;
Aτ + B
Cτ + D

)

= (Cτ + D)e
(

z
4(Cτ + D)

)
e

⎛

⎝
C
(
− z2

2 + z(Aτ + B)
)

4(Cτ + D)

⎞

⎠ Â2
(
− z
2
,−(Aτ + B); 2τ

)

(2.11)

= (Cτ + D)e
(

z
4(Cτ + D)

)
e

⎛

⎝
C
(
− z2

2 + z(Aτ + B)
)

4(Cτ + D)

⎞

⎠ (2.12)

× e
(
z(1 − A)

4

)
Â2
(
− z
2
,−τ ; 2τ

)
. (2.13)

To move from (2.11) to (2.12), we have also used that the number A is odd, and the
Jacobi elliptic transformation properties of Â2 in Lemma 2.5. Simplifying, and using that
AD − BC = 1, we see that (2.12) equals

(Cτ + D)e
( −Cz2

8(Cτ + D)

)
B̂1,2(z; τ ).

This establishes the claimed Jacobi modular transformation property of B̂1,2(z; τ ).
To claimed Jacobi elliptic transformation properties of B̂1,2(z; τ ) largely follow from

those of Â2 (in Lemma 2.5), after a straightforward calculation. �


2.3 A combinatorial q-hypergeometric series

Recall from the introduction the q-hypergeometric series Pn(w; q) which appears in our
identities:

Pn(w; q):=
∞∑

m=0
(−w2)mq

m(m+1)
2

[
m + n
m

]

q
.

This function can be interpreted as the following combinatorial generating function.

Lemma 2.10 We have that

Pn(w; q) =
∞∑

k=0

∞∑

m=0
αn(k,m)(−w2)mqk ,

where αn(k,m):=p(k | m distinct parts, rank ≤ n).

Proof We have that

Pn(w; q) =
∞∑

m=0

[
m + n
m

]

q
(−w2)mq

m(m+1)
2

=
∞∑

m=0

∞∑

k=0
p(k | ≤ m parts, parts ≤ n)(−w2)mq

m(m+1)
2 +k

=
∞∑

k=0

∞∑

m=0
p(k | m distinct parts, rank ≤ n)(−w2)mqk ,
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whichwe justify as follows. Tomove from the first equality to the second above, we use the

combinatorial interpretation of the q-binomial term
[
n + m
m

]

q
(see [3, §7.2]). To move

from the second equality to the third above, we appeal to the evident bijection between
partitions of m(m + 1)/2 + k with at most m parts, parts at most n, and partitions of k
into m distinct parts with rank at most n. Note that partitions into distinct parts have
non-negative rank. Thus we have obtained the desired result. �


This interpretation of Pn(w; q) as a generating function gives us an easy way to find its
infinite counterpart.

Lemma 2.11

lim
n→∞Pn(w; q) = (w2q; q)∞,

Proof We let the rank n go to infinity in the combinatorial interpretation above in Lemma
2.10, obtaining

lim
n→∞Pn(w; q) =

∞∑

k=0

∞∑

m=0
p(k,m)(−w2)mqk ,

where p(k,m):=p(k | m distinct parts).
It is known that the generating function for partitions with distinct parts is

∞∑

k=0

∞∑

m=0
p(k,m)tmqk = (−tq; q)∞.

With the substitution t = −w2 into the formula above, we obtain (w2q; q)∞ as claimed. �


3 Sums of tails: proofs of Proposition 1.2 and Corollary 1.3.
Proof of Proposition 1.2 To prove the identity in (i.) of Proposition 1.2, it is not difficult to
show that

(1 − w)
∞∑

n=0

(
(wq; q)∞
(−wq; q)∞

− (wq; q)n
(−wq; q)n

)
wn = (wq; q)∞

(−wq; q)∞
− (1 − w)

∞∑

n=0

(wq; q)n
(−wq; q)n

wn.

Applying [14, (14.31)] proves the result.
The proof of identity (ii.) begins similarly. We apply [14, (14.3)] with q �→ q2, and then

setting a = t = w, and b = wq, which yields that

(1 − w)
∞∑

n=0

(wq2; q2)n
(wq; q2)n+1

wn =
∞∑

n=0
(1 + wq2n+1)w2nq2n

2+n.

Some additional rewriting shows that this function equals θ2(w; q).
To prove (iii.), we begin similarly, apply [14, (7.7)], and do some rewriting to reveal

θ3(w; q).
To prove (iv.), we proceed similarly and apply the following identities [14, (6.1), (6.22),

(7.7)]:
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(1 − w)
∞∑

n=0
Pn(w; q)wn =

∞∑

n=0

(−w2)nq
n(n+1)

2

(wq; q)n

=
∞∑

n=0
(−1)nq

3n2+n
2 w3n +

∞∑

n=1
(−1)nq

3n2−n
2 w3n−1

= θ3(w; q).

The result now follows after a short calculation.
Lastly, to prove (v.), we begin by noting that applying [14, (6.1)] to the expression

lim
t→1−

∂

∂t
(1 − t)

∞∑

n=0
(w2q)ntn, (3.1)

then differentiating, gives us

lim
t→1−

∂

∂t
(1 − t)

∞∑

n=0
Pn(w; q)tn + D̃(w; q),

where

D̃(w; q):= lim
t→1−

∂

∂t

∞∑

n=0

(−w2t)nq
n(n+1)

2

(q; q)n
.

By Proposition 2.1 of [4], we have that

lim
t→1−

∂

∂t
(1 − t)

∞∑

n=0
Pn(w; q)tn =

∞∑

n=0
((w2q; q)∞ − Pn(w; q)).

Applying the same proposition to equation (3.1) gives us
∞∑

n=0
((w2q; q)∞ − (w2q; q)n).

Lastly, lettingN → ∞ in [14, (6.32)],wehave that D̃(w; q) is equal to limt→1− ∂
∂t (tw

2q; q)∞.
A direct calculation then reveals that D̃(w; q) = −D(w; q). Combining the above results
proves the desired identity. �

Proof of Corollary 1.3 Identities (i.), (ii.), and (iii.) in Corollary 1.3 follow by differentiating
in the variablew the sumof tails identities (i.), (ii.), and (iii.) in Proposition 1.2, respectively,
and evaluating at w = 1. In the case of Corollary 1.3 (iii.), we also use the well-known fact
that

(q; q)∞ =
∞∑

n=0

(
12
n

)
q

n2−1
24 . (3.2)

Identity (iv.) in Corollary 1.3 can be deduced fromProposition 1.2 in twoways. As above,
we differentiate identity (iv.) in Proposition 1.2 in w and evaluate at w = 1 to obtain the
result, also using (3.2). On the other hand, we may evaluate Proposition 1.2 identity (v.)
at w = 1, and apply (iii.) from Corollary 1.3 (just established from Proposition 1.2 in the
preceding paragraph), to obtain the result. �


4 Quantum Jacobi forms
In this section, we make Theorem 1.4 more precise in Theorem 4.1, Theorem 4.3, and
Theorem 4.6. We also establish their proofs.
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4.1 Quantum Jacobi forms from H1(w; q) and θ1(w; q)

To state our results, using θ1(w; q) and H1(w; q) as defined in (1.4) and (1.7), and with
w = e2π iz and q = e2π iτ , we define for any positive integers a and b satisfying a < b,
where b is even and at least 4, the functions

θ̃1(z; τ ) = θ̃1(a, b; z; τ ):=q
a2
b2 w

a
b
(
1 + θ1(−iw

1
2 q

a
b ; q)

)
,

H̃1(z; τ ) = H̃1(a, b; z; τ ):=q
a2
b2 w

a
b
(
1 + (1 + iw

1
2 q

a
b )H1(−iw

1
2 q

a
b ; q)

)
.

Remark It follows from [14, (14.31)] that the functions θ̃1 and H̃1 are equal.

For ease of notation, we will often omit the dependence of the functions θ̃1 and H̃1 on
a and b.

Theorem 4.1 The following are true.

(1) The functions θ̃1(z;−τ ) and H̃1(z;−τ ) are quantum Jacobi forms of weight 1/2 and
index −1/4.

(2) The functions θ̃1(z;−τ ) and H̃1(z;−τ ) are mock Jacobi forms of weight 1/2 and index
−1/4.

Remark The explicit transformation properties of these functions are ultimately deduced
from results given in [11]. In particular, the functions exhibit quantum Jacobi transfor-
mation properties on the setQa,b ⊆ Q × Q defined as follows:

Qa,b:=

⎧
⎪⎨

⎪⎩

(
r
s
,
h
k

)
∈ Q × Q :

(i) s > 0, k > 0, gcd(r, s) = gcd(h, k) = 1, and k even
(ii) for all j mod k, hs(a + bj) �≡ bk

4 (2r + s) (mod bks)
(iii) if k ≡ 0 (mod 4) then h �≡ ±1 (mod 2b)

⎫
⎪⎬

⎪⎭
.

(4.1)

We refer the reader to [11] and also to the proof of Theorem 4.1 below, for additional
details.

A key ingredient to our proof of Theorem 4.1 involves the universal mock theta function
g2(w; q), defined by

g2(w; q):=
∑

n≥0

(−q; q)nqn(n+1)/2

(w; q)n+1(w−1q; q)n+1
.

The function g2 is aptly named “universal,” as specializations of this function in the vari-
ablesw and q yield all of Ramanujan’s mock theta functions (up to the addition ofmodular
forms) [19].
As Proposition 4.2 reveals (and makes more precise), the function θ1(w; q) is “dual”

to the universal mock theta function g2(w; q) outside of the unit disk. (See for example
[9,15,18] for more results along these lines.)

Proposition 4.2 We have that

θ1(w; q−1) = −1 + 2w−1g2(−w−1; q).
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Proof of Proposition 4.2 Using the identity stated in Theorem 4.1 (which follows from [14,
(14.31)]), and the fact that (a; q−1)n = (−a)nq− n(n−1)

2 (a−1; q)n, we have that

θ1(w; q−1) = (1 − w)
∞∑

n=0

(wq−1; q−1)n
(−wq−1; q−1)n

wn

= (1 − w)
∞∑

n=0

(w−1q; q)n
(−w−1q; q)n

(−w)n

= −1 + 2w−1g2,3(−w−1; q),

where

g2,3(w; q):= − 1 + w
2w2

∞∑

n=0

(−wq; q)n
(wq; q)n

w−n − 1
2w

.

The result now follows from [9, Theorem 4.1]. �

Proof of Theorem 4.1 From Proposition 4.2 with w �→ −iw

1
2 q− a

b , and w = e2π iz , q =
e2π iτ , we have that

1
2 θ̃1(z;−τ ) = iq− a2

b2
+ a

b w
a
b− 1

2 g2(−iq
a
b w− 1

2 ; q),

which is the function Ga,b(z; τ ) defined in [11]. From [11, Theorem 1.1] we have that
Ga,b(z; τ ) is a quantum Jacobi form of weight 1/2, index −1/4 on Qa,b (see (4.1)) and
Jacobi group 
′

b,1 � (2Z×2Z) (see [11, Definition 3.3]). By Remark (2) following Theorem
1.1 in [11], we also have that this function is amock Jacobi formwhen viewed as a function
in C × H. �


4.2 Quantum Jacobi forms from H2(w; q) and θ2(w; q)

Let w = e2π iz and q = e2π iτ . We define

θ̃2(z; τ ):=q
1
8w

1
4 θ2(w

1
2 ; q),

H̃2(z; τ ):=q
1
8w

1
4 (1 − w

1
2 )H2(w

1
2 ; q).

Remark It follows from [14, (14.4) and (6.3)] that the functions θ̃2 and H̃2 are equal.

For γ = ( A B
C D
) ∈ 
0(2), we define ψγ :=

(
C
D

) (
C/2
D

)−2
ζ 1−D−BD
8 .

Theorem 4.3 The following are true.

(1) The functions θ̃2(z;−τ ) and H̃2(z;−τ ) are quantum Jacobi forms on S2 of weight
1/2 and index −1/8 with respect to 
0(4) � (4Z × 2Z) and with character ψγ . In
particular, for z ∈ (− 1

4 , 0), τ �= − 1
4 , we have that

θ̃2(z;−τ ) − (4τ + 1)−
1
2 e
(

z2

2(4τ + 1)

)
θ̃2

(
z

4τ + 1
;

−τ

4τ + 1

)

= −1
2

∫ ∞

0

∑
± g∓ 1

4 ,−z (1 + it)
√−i (1 + it + 4τ )

dt, (4.2)

and thedifference in (4.2) extends toaC∞ functionon (R\(Z+{0, 12 ,± 1
4 }))×(R\{− 1

4 }).
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(2) The functions θ̃2(z;−τ ) and H̃2(z;−τ ) are mock Jacobi forms of weight 1/2 and index
−1/8, on 
0(2) � (4Z × 2Z) and character ψγ .

Our proof of Theorem 4.3 is very similar to the proof of [15, Theorem 1], but the work
done there does not directly apply due to the hypothesis there that 4 | β .
A key ingredient to the proof of Theorem 4.3 involves the Appell-Lerch sum B1,2 (see

Sect. 2.2). We recall that the functions N and J appearing in Proposition 4.4 are defined
in Sect. 2.1. Similar to Proposition 4.2 used in our proof of Theorem 4.1, Proposition 4.4
below establishes a “dual” to θ2(w; q) outside of the unit disk, in terms of a mock Jacobi
form.

Proposition 4.4 We have that

w
1
2 q− 1

8 θ2(w; q−1) = −N (τ )B1,2(2z; τ ) − J (2z; τ ).

Proof of Proposition 4.4 Proceeding as in the proof of Theorem 4.1, we have that

θ2(w; q−1) = (1 − w)
∞∑

n=0

(wq−2; q−2)n
(wq−1; q−2)n+1

wn

= (1 − w−1)
∞∑

n=0

qn+1wn(w−1q2; q2)n
(w−1q; q2)n+1

. (4.3)

Using [9, Theorem 5], after some simplification, we see that (4.3) is equal to

1
(1 − w)

K (w−1; q) − 1
(1 − w)

(q; q2)3∞(q2; q2)∞
(wq; q)∞(w−1q; q)∞

, (4.4)

where

K (w; q):=
∞∑

n=0

(−1)nqn2 (q; q2)n
(wq2; q2)n(w−1q2; q2)n

.

By [15, Lemma 2], we have that

w
1
2 q− 1

8

(w − 1)
K (w−1; q) = N (τ )B1,2(2z; τ ).

Using this with (4.4) and some simplifying completes the proof. �


Proof of Theorem 4.3 We have from Proposition 2.9 that

B1,2(z; τ ) − (4τ + 1)−1e
(

z2

2(4τ + 1)

)
B1,2

(
z

4τ + 1
;

τ

4τ + 1

)

= −B−
1,2(z; τ ) + (4τ + 1)−1e

(
z2

2(4τ + 1)

)
B−
1,2

(
z

4τ + 1
;

τ

4τ + 1

)
,

where

B−
1,2(z; τ ):=e

( z
4

)
A−
2

(
− z
2
,−τ ; 2τ

)
,

and A−
2 (z1, z2; τ ) is the nonholomorphic part of the sum given in (2.6) (i.e., i/2 multiplied

by the sum on j in (2.6)).
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Using this and the transformation for N under
( 1 0
4 1
)
given in Lemma 2.3 we have that

N (τ )B1,2(z; τ ) − (4τ + 1)−
1
2 e
(

z2

2(4τ + 1)

)
N
(

τ

4τ + 1

)
B1,2

(
z

4τ + 1
;

τ

4τ + 1

)

= −N (τ )
(
B−
1,2(z; τ ) − (4τ + 1)−1e

(
z2

2(4τ + 1)

)
B−
1,2

(
z

4τ + 1
;

τ

4τ + 1

))
.

Similar to the proof given in [15, p21], we compute that

B−
1,2(z; τ ) − (4τ + 1)−1e

(
z2

2(4τ + 1)

)
B−
1,2

(
z

4τ + 1
;

τ

4τ + 1

)

= T (τ )
[
e
( z
4

)
σ (z; τ ) − (4τ + 1)−1e

(
z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)

× ε3
( 1 0
1 1
)
(4τ + 1)

1
2 e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)
σ

(
z

4τ + 1
; γ τ

)]
,

where

σ (z; τ ):=
∑

±
f±(z; τ )r±(z; τ ),

f±(z; τ ):= i
2
e
((

1∓1
2

)(
− z
2

))
,

r±(z; τ ):=R
(−z + τ − (1∓1)τ − 1

2 ; 4τ
)
.

The term in brackets [·] above is

e
( z
4

)∑

±
f±(z; τ )r±(z; τ ) (4.5)

− (4τ + 1)−
1
2 ε3
( 1 0
1 1
)
e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)

(4.6)

×
∑

±
f±
(

z
4τ + 1

;
τ

4τ + 1

)
r±
(

z
4τ + 1

;
τ

4τ + 1

)
. (4.7)

(Note. These last two large expressions shown above are the same expressions as in [15,
(5.12)] and at the top of page 22, respectively, with (α,β) = (1, 2), although we note again
that [15] requires 4 | β so not all of the work done there directly applies here. E.g., in what
comes next, our proof proceeds somewhat differently than as in [15].)
Let

z±
1 :=

−z + τ

4τ + 1
− (1∓1)

τ

4τ + 1
− 1

2
= −1

2
+ −z ± τ

4τ + 1
,

z±
2 :=

1
2

− τ + (1∓1)τ + z = 1
2

+ z∓τ ,

τ1:=−1
4τ

− 1.

UsingLemma2.6,we establishLemma4.5. For brevity,we refer the reader to the analogous
result and proof in [15] for more details.
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Lemma 4.5 We have that

r±
(

z
4τ + 1

;
τ

4τ + 1

)
= a±(z; τ )h(z±

1 τ1; τ1) − b̃±(z; τ )h(−z∓
2 ; 4τ ) + b̃±(z; τ )r∓(z; τ ),

where

b̃±(z; τ ):= ± a±(z; τ )ζ8
√−4iτe

(
−(z∓

2 )2

8τ

)
,

and

a±(z; τ ):=
√−iτ1e

(
−(z±

1 )2τ1
2

)
.

Resuming the proof of Theorem 4.3, we have that the expression in (4.5) equals

i
2
∑

±
e
(±z

4

)
r±(z; τ ). (4.8)

Further, using Lemma 4.5, we have that the expression in (4.6)-(4.7) equals

− (4τ + 1)−
1
2 ε3
( 1 0
1 1
)
e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)

×
∑

±
f±
(

z
4τ + 1

;
τ

4τ + 1

)(
G̃±(z; τ ) + b̃±(z; τ )r∓(z; τ )

)
, (4.9)

where

G̃±(z; τ ):=a±(z; τ )h(z±
1 τ1; τ1) − b̃±(z; τ )h(−z∓

2 ; 4τ ).

We now consider the portion of the multi-line expression in (4.9) involving b̃±(z; τ )
r∓(z; τ ), namely

− (4τ + 1)−
1
2 ε3
( 1 0
1 1
)
e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)

×
∑

±
f±
(

z
4τ + 1

;
τ

4τ + 1

)
b̃±(z; τ )r∓(z; τ ). (4.10)

This multi-line expression in (4.10) is equal to

− (4τ + 1)−
1
2 ζ−1

8 e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)

∑

±

i
2
e
((

1∓1
2

)(
− z
2(4τ + 1)

))
(±1)a±(z; τ )ζ8

√−4iτe
(

−(z∓
2 )2

8τ

)
r∓(z; τ )

= −(4τ + 1)−
1
2 ζ−1

8 e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)
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∑

±

i
2
e
((

1∓1
2

)(
− z
2(4τ + 1)

))
(±1)

√

−i
(

− 1
4τ

− 1
)
e

⎛

⎜⎝
−
(−z±τ
4τ+1 − 1

2

)2 (− 1
4τ − 1

)

2

⎞

⎟⎠

ζ8
√−4iτe

(
−( 12 ± τ + z)2

8τ

)
r∓(z; τ )

= − i
2
∑

±
e
(∓z

4

)
r∓(z; τ ),

which we see cancels with the sum in (4.8).
Next we consider the function G̃±(z; τ ) from (4.9). Let

a±
1 := − 1

4
+ (1∓1)

4
= ∓1

4
, a2:= − 1

2
− z, b±

1 :=z + 1
4

− 1
4
(1∓1):=z ± 1

4
.

By the hypothesis given in Theorem 4.3 (1), we have that z ∈ (− 1
4 , 0), so we may use

Lemma 2.7, noting that z±
1 τ1 = a2τ1 − b±

1 , and that z±
2 = a±

1 4τ − a2. Thus we have that

h(z±
1 τ1; τ1) = −e

(
a22τ1
2

− a2(b±
1 + 1

2
)
)∫ i∞

0

ga2+ 1
2 ,b

±
1 + 1

2
(u)

√−i(u + τ1)
du, (4.11)

h(z±
2 ; 4τ ) = −e

(
(a±

1 )24τ
2

− a±
1 (a2 + 1

2 )
)∫ i∞

0

ga±
1 + 1

2 ,a2+ 1
2
(u)

√−i(u + 4τ )
du. (4.12)

In the integral in (4.11) we let u = 1 − 1/ρ so that (4.11) becomes

− e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)∫ 0

1

ga2+ 1
2 ,b

±
1 + 1

2

(
1 − 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ

ρ2

= −e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)
e
(

− (a2 + 1
2 )(a2 + 3

2 )
2

)

×
∫ 0

1

ga2+ 1
2 ,a2+b±

1 + 3
2

(
− 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ

ρ2 , (4.13)

where we used Lemma 2.8 (iii). We rewrite

a2 + b±
1 + 3

2
=
(
a2 + 1

2

)
+ b±

1 + 1 = −a±
1 + 1,

and obtain using Lemma 2.7 that (4.13) is equal to

− e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)
e
(

− (a2 + 1
2 )(a2 + 3

2 )
2

)∫ 0

1

ga2+ 1
2 ,−a±

1 +1

(
− 1

ρ

)

√
(−i)(−1)(4τ + ρ)

√
4ρτdρ

ρ2

= e
(
a22τ1
2

− a2(b±
1 + 1

2 )
)
e
(

− (a2 + 1
2 )(a2 + 3

2 )
2

)

×
√

4τ
−1

i(−i)
3
2 e
((

a2 + 1
2

) (−a±
1 + 1

)) ∫ 0

1

ga±
1 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ.
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After some additional simplifications, we find that

a±(z; τ )h(z±
1 τ1; τ1) = a±(z; τ )

√
4τ
−1

i(−i)
3
2 eπ i

(1±1)
4 e

(
− 1
32τ

− z
8τ

− z2

8τ

)

×
∫ 0

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ (4.14)

= a±(z; τ )
√
4τρ±

8 e
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ 0

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ,

(4.15)

where ρ+
8 :=ζ−1

8 and ρ−
8 :=ζ−3

8 .
Additionally, we have (after simplifying, and using Lemma 2.7) that

− b̃±(z; τ )h(−z∓
2 ; 4τ )

= ±a±(z; τ )ζ8
√−4iτe

(
−(z∓

2 )2

8τ

)
e
(
(a∓

1 )24τ
2

− a∓
1

(
a2 + 1

2

))

×
∫ i∞

0

ga∓
1 + 1

2 ,a2+ 1
2
(ρ)

√−i(ρ + 4τ )
dρ

= a±(z; τ )
√
4τρ±

8 e
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ i∞

0

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(ρ + 4τ )
dρ. (4.16)

Adding (4.15) and (4.16) we obtain that

G̃±(z; τ ) = a±(z; τ )
√
4τρ±

8 e
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ i∞

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ. (4.17)

We now substitute this into the portion of the multi-line expression in (4.9) involving
G̃±(z; τ ). That is, from (4.9) we have the expression

− (4τ + 1)−
1
2 ε3
( 1 0
1 1
)
e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
(
(−τ + 1

2 (4τ + 1))2

2(4τ + 1)

)

×
∑

±
f±
(

z
4τ + 1

;
τ

4τ + 1

)
G̃±(z; τ ). (4.18)

Using (4.17), we have that (4.18) equals

− (4τ + 1)−
1
2 ζ−1

8 e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)

× e
((−τ + 1

2 (4τ + 1)
)2

2(4τ + 1)

)
∑

±
f±
(

z
4τ + 1

,
τ

4τ + 1

)
G̃±(z; τ )

= −(4τ + 1)−
1
2 ζ−1

8 e
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)

× e
((−τ + 1

2 (4τ + 1)
)2

2(4τ + 1)

)
∑

±

i
2
e
((

1∓1
2

)( −z
2(4τ + 1)

))



A. Folsom et al. Res. Number Theory             (2022) 8:8 Page 21 of 24     8 

×
√

−i
(

− 1
4τ

− 1
)
e
(−(−z±τ

4τ+1 − 1
2 )

2 (− 1
4τ − 1

)

2

)

× √
4τρ±

8 e
(

− 1
32τ

− z
8τ

− z2

8τ

)∫ i∞

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ

= − i
2
ζ−1
8

√
ie
(

z2

2(4τ + 1)

)
e
(

z
4(4τ + 1)

)
e
((−τ + 1

2 (4τ + 1)
)2

2(4τ + 1)

)

× e
(

− 1
32τ

− z
8τ

− z2

8τ

)

×
∑

±
ρ±
8 e
((

1∓1
2

)( −z
2(4τ + 1)

))
e
(−(−z±τ

4τ+1 − 1
2 )

2 (− 1
4τ − 1

)

2

)

×
∫ i∞

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ

= − i
2
ζ−1
8

√
iq

1
8
∑

±
ρ±
8 (ρ

±
8 )

−1
∫ i∞

1

g∓ 1
4 ,a2+ 1

2
(ρ)

√−i(4τ + ρ)
dρ

= − i
2
q

1
8

∫ i∞

1

∑
± g∓ 1

4 ,−z(ρ)√−i(4τ + ρ)
dρ.

Overall, under the hypotheses given, we have shown that

N (τ )B1,2(z; τ ) − (4τ + 1)−
1
2 e
(

z2

2(4τ + 1)

)
N
(

τ

4τ + 1

)
B1,2

(
z

4τ + 1
;

τ

4τ + 1

)

= N (τ )T (τ )
i
2
q

1
8

∫ i∞

1

∑
± g∓ 1

4 ,−z(ρ)√−i(4τ + ρ)
dρ

= − i
2

∫ i∞

1

∑
± g∓ 1

4 ,−z(ρ)√−i(4τ + ρ)
dρ = 1

2

∫ ∞

0

∑
± g∓ 1

4 ,−z(1 + it)
√−i(4τ + 1 + it)

dt, (4.19)

also using that N (τ )T (τ ) = −q− 1
8 .

To complete the transformation and analytic properties stated in the theorem with
respect to

( 1 0
4 1
)
, we observe that from Proposition 4.4, we have that ϑ̃2(z;−τ ) =

−N (τ )B1,2(z; τ ) − J (z; τ ). We combine this with (4.19) and the Jacobi modular trans-
formation properties for J (z; τ ) under

( 1 0
4 1
)
given in Lemma 2.4. Thus, to finish the proof

(with respect to
( 1 0
4 1
)
), wemust establish the claimedC∞ properties inR×R.Weestablish

these in Sect. 4.2.1 below.
Next, we observe that 
0(4) is generated by the matrices

( 1 0
4 1
)
,
( 1 1
0 1
)
, and

(−1 0
0 −1

)
.

The appropriate behavior under the second and third generators are easily deduced
directly. Similarly, the Jacobi elliptic properties (and subsequently the required ana-
lytic properties in R × R) may be directly checked. That is, we recall again that
ϑ̃2(z;−τ ) = −N (τ )B1,2(z; τ ) − J (z; τ ) The elliptic Jacobi properties for B1,2 are directly
established using its definition and the elliptic Jacobi properties of A2; the elliptic Jacobi
properties of J may be deduced from its definition and those of ϑ (see also Lemma 2.4).

4.2.1 C∞ properties

In this section we establish the claimed C∞ properties in Theorem 4.3 (1). The proof
follows in a similar manner to the proof of a related result in [7], and we refer the reader
there for additional details.
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For the region (− 1
4 , 0) × (R \ {− 1

4 }) , the result is obtained using the expression on the
right-hand side of (4.2), using the Leibniz rule as explained in [7]. To finish the proof,
we are left to establish the C∞ nature of the error to Jacobi transformation in the larger
region in R × R given in Theorem 4.3 (1). If it’s not the case that z ∈ (− 1

4 , 0
)
, then we

appeal to the following facts:

h(u + 1; τ ) = −h(u; τ ) + 2√−iτ
e
(
(u + 1

2 )
2

2τ

)
, (4.20)

h(u + τ ; τ ) = −e
(
u + τ

2

)
h(u; τ ) + 2e

(
u
2

+ 3τ
8

)
, (4.21)

which are established in [29]. We begin with three cases: z ∈ (− 1
2 ,− 1

4 ) (case 1), z ∈ (0, 14 )
(case 2), and z ∈ ( 14 ,

1
2 ) (case 3). In all cases, a±

1 ∈ (− 1
2 ,

1
2 ). In case 2, b±

1 ∈ (− 1
2 ,

1
2 ) and

a2 + 1 ∈ (− 1
2 ,

1
2 ). In case 3, b−

1 , b
+
1 − 1, and a2 + 1 are all in (− 1

2 ,
1
2 ). In case 1, b+

1 , b
−
1 + 1,

and a2 are all in (− 1
2 ,

1
2 ). With this established, the C∞ properties follow from (4.20)

and (4.21) and those already established (when z ∈ (− 1
4 , 0)). In the general setting, for

z ∈ R\(Z+{0, 12 ,± 1
4 }),we can always find some � ∈ Z such that z+� is in (− 1

2 ,
1
2 )\{0,± 1

4 }.
The result follows according to cases 1-3 above (and the previously established results on
(− 1

4 , 0)), making repeated use of (4.20) and (4.21). (See [7] for a similar argument.) �


4.3 Quantum Jacobi forms from H3,j(w; q) and θ3(w; q)

Let w = e2π iz , q = e2π iτ . Define

θ̃3(z; τ ):=w
1
2 q

1
24 θ3(w; q),

H̃3,j(z; τ ):=w
1
2 q

1
24 (1 − w)H3,j(w; q),

(j ∈ {1, 2}).
Remark It follows from [14, (7.7)] after rewriting the right-hand side appearing there as
θ3(w; q), that the functions θ̃3 and H̃3,1 are equal.

Theorem 4.6 The following are true.

(1) The functions θ̃3(z; τ ) and H̃3,j(z; τ ) (1 ≤ j ≤ 2) are quantum Jacobi forms of weight
1/2 and index −3/2.

(2) The functions θ̃3(z;−τ ) and H̃3,1(z;−τ ) aremock Jacobi forms of weight 1/2 and index
−3/2.

Remark The explicit transformation properties of these functions are ultimately deduced
from results given in [15]. We refer the reader there, and also to the proof of Theorem 4.6
below, for more details.

Proof of Theorem 4.6 The results for θ̃3(z; τ ) and H̃3,1(z; τ ) follows from work in [15].
Namely, we deduce from the proof of [15, Lemma 17] that

T1(w; q) = θ̃3(z; τ ) =
4∑

j=1
χ12(α

(j)
1 )C

α
(j)
1 ,12(12z; 12τ ),

where T1,α
(j)
1 , and Cα,β are as defined in [15]. We have also used that χ12(·) from [15] is

equal to
( 12

·
)
. The result then follows as argued on p. 30-31 of [15] in the proof of Theorem

4.
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The results for H̃3,2(z; τ ) follow fromProposition 1.2 (iv.) and the results just established
for θ̃3(z; τ ). That is, by a similar argument to one given in [28], we see using Proposition
1.2 (iv.) asymptotically as τ → h/k vertically for fixed a/b such that (ζ 2a

b ζ h
k ; ζ

h
k )∞ vanishes

(e.g., (a/b, h/k) ∈ S3), we have that H̃3,2(a/b, h/k) and θ̃3(a/b, h/k) are equal. The function
H̃3,2(z; τ ) now inherits its quantum properties from θ̃3(z; τ ) as established above. �


5 Asymptotics and L-values: Proof of Theorem 1.5
Proof of Theorem 1.5 Part (1). The proof follows in a similar manner as the proofs of [18,
Theorem 1.3 (3)] and [16, Theorem 1.3 (ii)]. For brevity, we provide a detailed sketch of
proof. Ultimately, we apply [21, Proposition p.98]. To do so, we show that the coefficients
c1(n) have mean value 0 with period 2k . We compute, using that bb′ = k for some integer
b′,

2k−1∑

n=0
c1(n) =

2k−1∑

n=0
(−1)nζ 2ab′n+hn2

k

=
⎛

⎝
k−1∑

n=0
+

2k−1∑

n=k

⎞

⎠ (−1)nζ 2ab′n+hn2
k

=
k−1∑

n=0
(−1)nζ 2ab′n+hn2

k +
k−1∑

n=0
(−1)n+kζ 2ab′(n+k)+h(n+k)2

k

=
k−1∑

n=0
(−1)nζ 2ab′n+hn2

k +
k−1∑

n=0
(−1)n+1ζ 2ab′n+hn2

k

= 0,

where we have also used that k is odd.
The first way to evaluate the functions given in part (1) of the theorem follows from the

asymptotic expansion just established. The second way to evaluate follows from fact that
any summand of the sum defining H1(w; q) which is indexed by n ≥ N1 vanishes, due to
the conditions satisfied by a, b, h, k .
Part (2). The asymptotic expansion given part (2) of the theorem follows from [18, Theo-
rem 1.3 (3)], noting that q− 1

8H (−a, b; τ ) = θ2(ζ a
b ; q), whereH (a, b; τ ) is as defined in [18].

The evaluations given in part (2) of the theorem follow by a similar method of proof as
the one above for the functions in part (1) of the theorem.
Part (3). The asymptotic expansion given in part (3) of the theorem for H3,1(w; q) and
θ3(w; q) follows from [16, Theorem 1.3 (ii)], noting that ϑ̃( ab ; τ ) = ζ a

2bq
1
24 θ3(ζ a

b ; q), where
ϑ̃(z; τ ) is as defined in [16]. The evaluations given in part (3) of the theorem forH3,1(w; q)
and θ3(w; q) follow by a similar method of proof as the one above for the functions in part
(1) of the theorem. The results for H3,2(w; q) follow from those just established as well as
Proposition 1.2 (iv.): fromProposition 1.2 (iv.), we have that for (a/b, h/k) ∈ S3, H3,2(ζ a

b ; q)
is asymptotic to θ3(ζ a

b ; q) as q tends radially towards ζ h
k , also noting that (ζ

2a
b ζ h

k ; ζ
h
k )∞ = 0.

�
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